

304-334B Electronic Circuits II

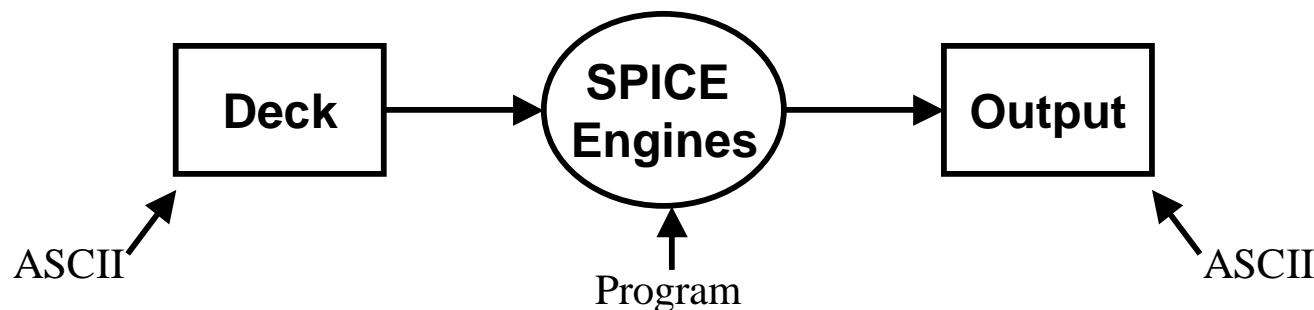
Tutorial on PSPICE

**Department of Electrical & Computer Engineering
McGill University, Montreal, Canada**

Rola A. Baki, Winter 2002

Introduction

SPICE = **S**imulation **P**rogram with **I**ntegrated **C**ircuits **E**mphasis


⇒ Program designed to analyze integrated circuits.

Also simulates any network, which could be represented by discrete components (resistors, capacitors, inductors and dependant independent sources).

⇒ SPICE engines “digitally” solve continuous time differential equations describing circuits.

How to use Spice?

We first have to write a Spice input file, also called “deck”.

Introduction

The input file must contain:

1. A title statement: ALWAYS on the first line of the input file.
2. A .END command: ALWAYS on the last line.
3. Circuit description: Lines that contains or a statement, which describe a circuit element, or a control line (i.e. analysis type, measurements nodes, or model parameters).

→ Comment statements should contain an asterisk (*) as a first character of the comment line.

→ The order of the SPICE lines is not important except for the title line and .END command.

→ SPICE is not case sensitive and words can be separated by an arbitrary number of spaces.

→ Components must be uniquely labeled.

→ Every node of the circuit is designated by a number. The ground node is labeled “0”.

Example of an Input File

Title → Low pass filter

The “+” sign means that the previous command is continued on this line.

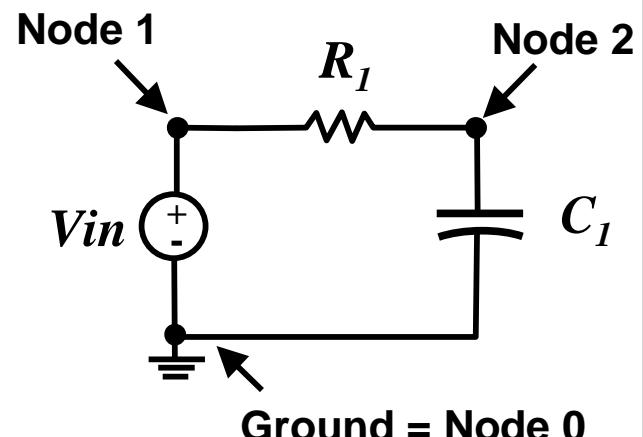
```
** Circuit Description **  
* Power supply  
Vin 1 0 PWL(0s, 0V, 1ms, 0V,  
+ 1.0001ms, 1V)
```

```
* Elements description  
R1 1 2 1Kohm  
C1 2 0 1uF
```

Positive Terminal (n+)

Negative Terminal (n-)

.END


command

*Analysis request

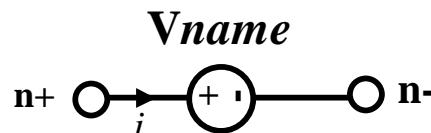
.OP

.Tran 0.1ms 5ms

.end

Passive elements

Basic elements types:


1st Letter

Presentation

<u>Element</u>
Capacitor
Resistor
Inductor
Bipolar Transistor
MOS Field Effect Transistor
Independent current source
Independent voltage source
Voltage-controlled voltage source
Current-controlled current source
Voltage-controlled current source
Current-controlled voltage source

Independent Source Representation in Spice

Voltage source:

Current flowing into (n+) is positive

Spice Description

$Vname$ n+ n- DC value

$Vname$ n+ n- AC Magnitude Phase

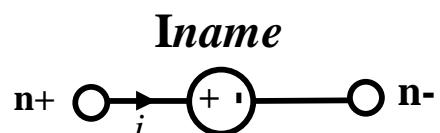
$Vname$ n+ n- SIN (V_o V_a freq t_d damp)

$Vname$ n+ n- PULSE (V_1 V_2 t_d t_r PWT)

$Vname$ n+ n- PWL (t_1 , v_1 , t_2 , v_2 , ..., t_n , v_n)

Type of Analysis

All types


AC Frequency response

Transient

Transient

Transient

Current source:

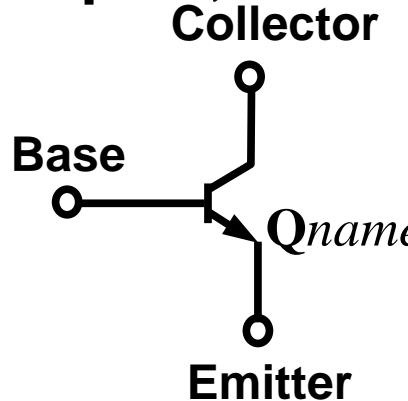
The Spice description for an independent current source is the same as the voltage source, except replace "V" by "I".

Analysis Request and Output Request

After specifying the circuit description, we still need to:

1. Specify the type of analysis for our simulations.
2. Choose the network variables that we want to display.

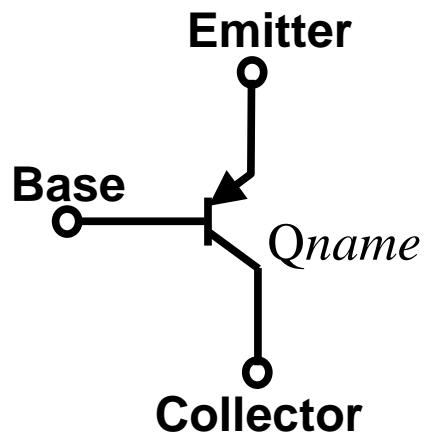
Analysis Requests:


Operating point	.OP
DC sweep	.DC <i>source_name start_value_stop_value_step</i>
AC frequency response	.AC DEC <i>points_per_decade freq_start freq-stop</i> .AC OCT <i>points_per_octave freq_start freq-stop</i> .AC LIN <i>total_points freq_start freq-stop</i>
Transient response	.TRAN <i>time_step time_stop [(no_print_time Max_step_size)]</i>

Output Requests:

Print data points	.PRINT DC <i>output_variables</i> .PRINT AC <i>output_variables</i> .PRINT TRAN <i>output_variables</i>
Plot data points	.Plot DC <i>output_variables [(lower_plot_limit upper_plot_limit)]</i> .Plot AC <i>output_variables [(lower_plot_limit upper_plot_limit)]</i> .Plot TRAN <i>output_variables [(lower_plot_limit upper_plot_limit)]</i>

Description of a Bipolar Transistor


In Spice, the NPN transistor is defined as follows:

Spice description:

`Qname collector base emitter substrate BJT_model_name
. MODEL BJT_model_name NPN (parameter_name = value ...)`

PNP transistor is defined as:

Spice description:

`Qname collector base emitter substrate BJT_model_name
. MODEL BJT_model_name PNP (parameter_name = value ...)`

Example of a Common Emitter Amplifier

Common-Emitter Amplifier Stage

** Circuit Description **

power supplies

V_{CC} 1 0 DC +10V

V_{EE} 8 0 DC -10V

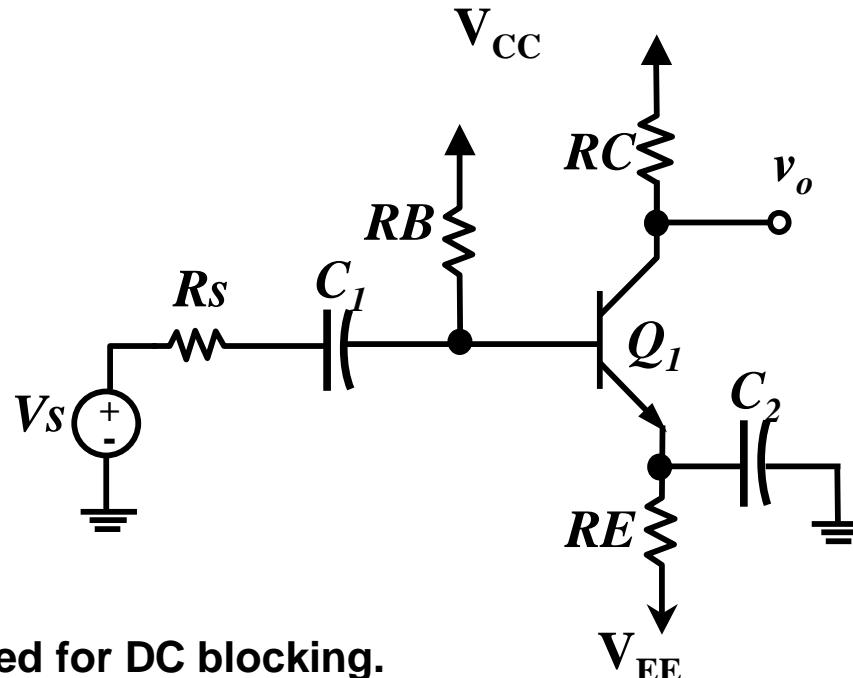
* input signal

V_s 6 0 AC 10mV

R_s 5 6 10k

* amplifier

Q_1 2 4 3 Q2N2222A


R_B 1 4 100k

R_C 1 2 10k

R_E 3 8 10k

C_1 4 5 1GF

C_2 3 0 1GF

Infinite capacitors, used for DC blocking.

* transistor model statement for the 2N2222A

.model Q2N2222A NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307

+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

** Analysis Requests ** * calculate DC bias point information

.OP

.AC LIN 1 1kHz 1kHz

.end

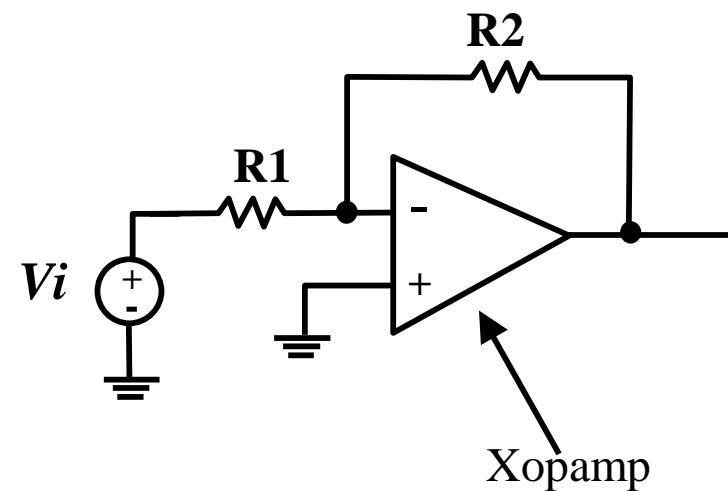
Description of a Subcircuit

Some circuit elements are not always available in the SPICE library (for example, op-amps). To add an op-amp to the SPICE deck, a “subcircuit” that represents this op-amp could be defined and incorporated into the main circuit.

The definition in SPICE for a subcircuit is as follows:

```
.SUBCKT subcircuit_name list_of_nodes
        Circuit Description
.ENDS
```

To incorporate the subcircuit into the main design, use the following statement, which starts with the letter “X”:


```
Xname node_connections subcircuit_name
```

Example of An Amplifier with a gain of -1

Inverting Amplifier With Gain -1

```
*** op-amp subcircuit
.subckt small_signal_opamp 1 2 3
*      connections:   |   |
*                  output  |
*                  +ve input |
*                  -ve input
Ginput 0 4 2 3 0.19m
Iopen1 2 0 0A ; redundant connection made at +ve input terminal
Iopen2 3 0 0A ; redundant connection made at -ve input terminal
R1 4 0 1.323G
C1 4 0 30p
Eoutput 1 0 4 0 1
.ends small_signal_opamp

** Main Circuit
** signal source
Vi 3 0 AC 1V 0Degrees
Xopamp 1 0 2 small_signal_opamp
R1 3 2 1k
R2 2 1 1k ** Analysis Requests ***
.AC DEC 5 0.1Hz 100MegHz *
* Output Requests *
.PRINT AC V(3) V(1)
.probe
.end
```

