HSPICE™ Simulation and
Analysis User Guide

Release U-2003.03-PA, March 2003

Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright 0 2003 Synopsys, Inc. All rights reserved. This software and documentation contain confidential
and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance with the terms of the license
agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of
Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the documentation for its
internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary
rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall
contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive
use of and its employees. This is
copy number B

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United
States of America. Disclosure to nationals of other countries contrary to United States law is
prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with
them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Registered Trademarks, Trademarks, and Service Marks
of Synopsys, Inc.

Registered Trademarks (®)

Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, CoCentric, COSSAP, CSim, DelayMill,
DesignPower, DesignSource, DesignWare, Eaglei, EPIC, Formality, in-Sync, LEDA, ModelAccess, ModelTools,
PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, RailMill, RapidScript, SmartLogic, SNUG, Solv-It, SolvNet,
Stream Driven Simulator, Superlog, System Compiler, TestBench Manager, TetraMAX, TimeMill, and VERA are
registered trademarks of Synopsys, Inc.

Trademarks (™)

BCView, Behavioral Compiler, BOA, BRT, Cedar, ClockTree Compiler, DC Expert, DC Expert Plus, DC
Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Compiler, DesignTime, DFT
Compiler SoCBIST, Direct RTL, Direct Silicon Access, DW8051, DWPCI, ECL Compiler, ECO Compiler,
ExpressModel, Floorplan Manager, FormalVera, FoundryModel, FPGA Compiler Il, FPGA Express, Frame
Compiler, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer, JVXtreme, Liberty, Library
Compiler, ModelSource, Module Compiler, MS-3200, MS-3400, NanoSim, OpenVera, Physical Compiler, Power
Compiler, PowerCODE, PowerGate, ProFPGA, Protocol Compiler, RoadRunner, Route Compiler, RTL Analyzer,
Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, SmartLicense, SmartModel Library, Source-Level
Design, SWIFT, Synopsys EagleV, Test Compiler, TestGen, TetraMAX TenX, TimeTracker, Timing Annotator,
Trace-On-Demand, TymeWare, VCS, VCS Express, VCSi, VHDL Compiler, VHDL System Simulator, VirSim, and
VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
DesignSphere, SVP Café, and TAP-in are service marks of Synopsys, Inc.

Registered Trademarks and Trademarks of Avant! Corporation LLC,
a Subsidiary of Synopsys, Inc.

Registered Trademarks (®)

ASYN, CALAVERAS ALGORITHM, CUT THE RISK GET IT RIGHT MAKE IT REAL, DESIGN INSIGHT, DEVICE MODEL BUILDER,
EDA WORKSHOP, EDAASSIMILATOR, EDAVALIDATOR, Enterprise, GET REAL. GET ACEO!, HSPICE, HYDRAULICEXPRESS,
HYPERMODEL, |, INSPECS, MAST, MASTER TOOLBOX, META, META-SOFTWARE, MODELEXPRESS, Raphael, Saber, TESTIFY,
TMA, VERIASHDL, WAVECALC, XYNETIX

Trademarks (™)

Active Parasitics, AFGen, Apollo, Apollo I, Apollo-DPII, Apollo-GA, ApolloGAll, ASTRO, Astro-Rail, Astro-Xtalk, ATRANS, Aurora,
AvanTestchip, AvanWaves, CALAVARAS, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, Cosmos SE,
CosmosLE, Cosmos-Scope, Cyclelink, Davinci, DFM-Workbench, Dynamic-Macromodeling, Dynamic Model Switcher, EDAnavigator,
Encore, Encore PQ, Evaccess, FASTMAST, Formal Model Checker, FRAMEWAY, GATRAN, Hercules, Hercules-Explorer, Hercules-
11, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSPICE-LINK, iQBus, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Libra-Passport, Libra-Visa, LRC, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager,
Metamixsim, Milkyway, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLIlint, Optimum Silicon,
Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Progen, Prospector, Proteus
OPC, PSMGen, Raphael-NES, Saber Co-Simulation, Saber for IC Design, SaberDesigner, SaberGuide, SaberRT, SaberScope,
SaberSketch, Saturn, ScanBand, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SOFTWIRE, Star, Star-DC,
Star-Hspice, Star-HspiceLink, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-Sim XT, Star-Time,
Star-XP, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-OPC, Taurus-Process, Taurus-Topography, Taurus-Visual,
Taurus-Workbench, The Power in Semiconductors, THEHDL, TimeSlice, TopoPlace, TopoRoute, True-Hspice, TSUPREM-4, Venus,
VERIFICATION PORTAL, VERIVIEW, VFORMAL

SystemC™ is a trademark of the Open SystemC Initiative and is used under license.
All other product or company names may be trademarks of their respective owners.

HSPICE Simulation and Analysis Manual, Release U-2003.03-PA, March 2003

Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

SYNOPSYS

Table of Contents

WhatsNewinThisRelease XXi
Known Limitations and Resolved D/Es XXil
Improved Documentation, XXii

About ThisManual XXii

AUIENCE . .. XXiii

CoNVENLIONS XX
Commands XXiii
Menu Text, File Names, and Examples XXV

Customer SUPPOIt XXVi
Accessing SOIVNet XXV
Contacting the Synopsys Technical Support Center XXV

Lo OVEIVIBW . oot e 1-1

Applications 1-2

Features 1-2

Supported Platforms 1-6

Vi

Simulation Structure 1-6

Data FIOW e 1-8
Simulation Process OVerviewt 1-9
Setup for Simulation 2-1
Setting Environment Variables 2-2
Using Wildcards e 2-2
Examples 2-4
Netlist OVEIVIEW o e e e e e e 2-5
Basic Structure 2-5
First Character 2-7
Adding Elements 2-8
Comments and Line Continuation 2-9
Software Conventions 2-10
Simulation Inputand Controls 3-1
Using Netlist Input Files i, 3-2
Input Netlist File Guidelines 3-2
Input Netlist File Composition 3-9
Title of Simulation and .TITLE Statement 3-9
COMMEBNES . . e e e e 3-10
Element and Source Statements 3-11
SUBCKT or MACRO Statement 3-14
.ENDS or .EOM Statement 3-15
Subcircuit Call Statement 3-16

Element and Node Naming Conventions 3-17

.GLOBAL Statement 3-21
TEMP Statement 3-22
DATA Statement 3-24
INCLUDE Statement 3-33
MODEL Statement e 3-33
LIB Call and Definition Statements 3-35
.OPTION SEARCH Statement 3-39
PARAM Statement e 3-41
PROTECT Statement 3-43
UNPROTECT Statement 3-44
ALTER Statement 3-44
ALIAS Statement 3-48
MALIAS Statement 3-50
.CONNECT Statement 3-51
DEL LIB Statement, 3-52
END Statement 3-55
Condition-Controlled Netlists (IF-ELSE) 3-56
Using Subcircuits 3-57
Hierarchical Parameters 3-58
Undefined Subcircuit Search 3-61
Discrete Device Libraries 3-62
DDL Library ACCESS . ..o ittt e 3-62
Vendor Libraries 3-64
Subcircuit Library Structure 3-65

Vii

viii

Using Standard Input Files i 3-65

Design and File Naming Conventions 3-65
Configuration File (meta.cfg) 3-66
Initialization File (hspice.ini) 3-67
DC Operating Point Initial Conditions File (<design>.ic#) 3-67
Starting HSPICE 3-67
Executing a Simulation L. 3-70
Interactive Simulation 3-72
Sample HSPICE Commands 3-73
Improving Simulation Performance with Multithreading 3-74
Running HSPICE-MT 3-75
Performance Improvement Estimations 3-76
HSPICE Qutput Files e 3-76
Elements 4-1
Passive Elements 4-2
RESISIONS . . o 4-2
Linear ReSIStOrS i 4-4
Behavioral Resistors 4-5
CapaCitOrS .« . oo 4-6
Linear Capacitors i 4-9
Behavioral Capacitors i 4-10
Charge-Conserving Capacitors 4-11
INAUCEOIS . . . 4-11
Mutual Inductors 4-14
Linear Inductors 4-17

Active Elements 4-17

Diode Element 4-17
Bipolar Junction Transistor (BJT) Element 4-20
JFETsand MESFETS i 4-23
MOSFETS ..t e 4-25
Transmission Lines o 4-28
Input Syntax forthe WElement 4-28

W Element Statement 4-29
TElement Statement 4-34

U Element Statement 4-36
Frequency-Dependent Multi-Terminal (S) Element 4-37
Frequency Table Model 4-42
Group Delay Handler in Time Domain Analysis 4-42
Pre-Conditioning S Parameters 4-43
Buffers 4-44
5. Sourcesand Stimuli 5-1
Independent Source Elements 5-2
Source Element Conventions 5-2
Independent Source Element 5-2
DC SOUICES ... 5-6
AC SOUICES . . .o e 5-6
Transient SOUICES i e e 5-7
Mixed SOUICES i 5-7

Independent Source Functions 5-8

Pulse Source Function 5-8
Sinusoidal Source Function 5-12
Exponential Source Function 5-15
Piecewise Linear (PWL) Source Function 5-17
Data-Driven Piecewise Linear Source 5-20
Single-Frequency FM Source Function 5-22
Amplitude Modulation Source Function 5-23
Voltage and Current Controlled Elements 5-26
Polynomial Functions 5-29
Piecewise Linear Function 5-34
POWeEr SOUICES e e 5-35
Independent Sources 5-35
Controlled Sources i 5-38
Voltage-Dependent Voltage Sources — E Elements 5-38
Voltage-Controlled Voltage Source (VCVS) 5-38
Behavioral Voltage Source 5-39
Ideal Op-Amp ... 5-40
ldeal Transformer 5-40
E Element Examples 5-42
Current-Dependent Current Sources — F Elements 5-45
Current-Controlled Current Source (CCCS) Syntax 5-45
F Element Parameters 5-46
Voltage-Dependent Current Sources — G Elements 5-49
Voltage-Controlled Current Source (VCCS) 5-50

Behavioral Current Source Syntax 5-51

Voltage-Controlled Resistor (VCR) 5-51

Voltage-Controlled Capacitor (VCCAP) 5-52
G Element Parameters 5-53
GElementExamples 5-55
Current-Dependent Voltage Sources — H Elements 5-58
Current-Controlled Voltage Source (CCVS) 5-58
H Element Parameters 5-59
HElementExamples 5-60
Digital and Mixed Mode Stimuli 5-62
U Element Digital Input Elements and Models 5-62
U Element Digital OQutputs 5-66
Replacing Sources With Digital Inputs 5-68
Specifying a Digital Vector File 5-72
Vector Patterns 5-73
Defining TabularData 5-81
TabularData 5-86
Waveform Characteristics 5-86
Modifying Waveform Characteristics 5-87
CommentLines 5-100
Continuingaline i 5-100
Digital Vector File Example 5-100

Xi

6.

Xii

Parameters and Functions 6-1

Using Parameters in Simulation (PARAM) 6-2
Defining Parameters i 6-2
Assigning Parameters 6-4
User-Defined Function Parameters 6-5
Subcircuit Default Parameter Definitions 6-6
Predefined Analysis Function 6-7
Measurement Parameters 6-7
.PRINT|.PROBE|.PLOT|.GRAPH Parameters 6-7
Multiply Parameter 6-8

Using Algebraic EXpressions 6-8

Built-In Functions 6-10

Parameter Scopingand Passing 6-13
Library Integrity 6-14
Reusing Cells 6-15
Creating Parametersinalibrary 6-15
Parameter Defaults and Inheritance 6-18
Parameter Passing Solutions 6-21

Simulation Qutput 7-1

Overview of Qutput Statements 7-2
Output Commands 7-2
Output Variables 7-3

Displaying Simulation Results 7-4

PRINT Statement 7-4
PLOT Statement 7-8
PROBE Statement 7-10
.GRAPH Statement 7-11
Using Wildcards in PRINT, PROBE, PLOT, and GRAPH Statements
7-14
Print Control Options 7-16
Printing the SubcircuitQutput 7-21
Selecting Simulation Output Parameters 7-23
DC and Transient Output Variables 7-23
AC Analysis Output Variables 7-31
Element Template Output 7-38
Specifying User-Defined Analysis (MEASURE) 7-39
MEASURE Performance 7-40
.MEASURE Parameter Types 7-42
.MEASURE Statement: Rise, Fall, and Delay 7-43
Average, RMS, and Peak Measurements 7-47
FIND and WHEN Functions 7-48
Equation Evaluation 7-51
Average, RMS, MIN, MAX, INTEG,and PP 7-51
INTEGRAL Function 7-53
DERIVATIVE Function 7-54
ERROR Function 7-56
Arithmetic Expression Measurements 7-59
.DOUT Statement: Expected Digital Output Signal 7-60

Xiii

Reusing Simulation Output as Input Stimuli 7-62

Output Files 7-66
Element Template Listings 7-67
8. Simulation OptioNs 8-1
Setting Control Options e 8-2
OPTION Statement 8-2
General Control Options i 8-6
Error Options 8-14
Version OptionNs 8-14
Model Analysis Options\ i, 8-15
DC Operating Point, DC Sweep, and Pole/Zero Options 8-17
Transient and AC Small Signal Analysis Options 8-26
Input and Output Options 8-34

9. Initializing DC/Operating Point Analysis 9-1
Simulation Flow 9-2
Initialization and Analysis 9-3
DC Initialization and Operating Point Statements 9-6
.OP Statement — Operating Point 9-6
Element Statement IC Parameter, 9-8

IC and .DCVOLT Initial Condition Statements 9-8
NODESET Statement 9-10
SAVE and LOAD Statementsoiiiinnn.. 9-10

Xiv

.DC Statement—DC SWeeps 9-13

Keywords and Parameters 9-15
Schmitt Trigger Example 9-17
Other DC Analysis Statements 9-18
.SENS Statement — DC Sensitivity Analysis 9-19
.TF Statement — DC Small-Signal Transfer Function Analysis .9-20
PZ Statement— Pole/Zero Analysis 9-21
DC Initialization Control Options 9-21
Accuracy and CONVErgencCecouuu it 9-26
Accuracy Tolerances i 9-26
Accuracy Control Options i 9-28
Autoconverge ProCess 9-31
Reducing DC EITOrsot e 9-35
Shorted ElementNodes 9-37
Inserting Conductance, Using DCSTEP 9-37
Floating-Point Overflow 9-38
Diagnosing Convergence Problems 9-39
Non-Convergence Diagnostic Table 9-39
Traceback of Non-Convergence Source 9-41
Solutions for Non-Convergent Circuits 9-42
10. Transient AnalysSiS.t 10-1
Simulation Flow 10-2
Overview of Transient Analysis i, 10-2

XV

XVi

Using the .TRAN Statement 10-4

.TRAN Keywords and Parameters 10-5
TRAN Examples 10-7
JRAN QUtput Syntax 10-8
Transient Analysis ofan RC Network 10-9
Transient Analysisof an Inverter 10-10
Using the .BIASCHK Statement 10-12
Options for the .biaschk Command 10-14
Transient Control Options oot 10-15
Matrix Manipulation Options, 10-23
Simulation Speed and Accuracy 10-24
Simulation Speed 10-24
Simulation ACCUraCy it 10-25
Numerical Integration Algorithm Controls 10-28
Gear and Trapezoidal Algorithms 10-28
Selecting Timestep Control Algorithms 10-31
Iteration Count Dynamic Timestep Algorithm 10-32
Local Truncation Error (LTE) Dynamic Timestep 10-33
DVDT Dynamic Timestep Algorithm 10-33
Timestep Controls 10-35
Fourier Analysis 10-37
FOUR Statement 10-38
FFT Statement 10-42

11. AC Sweep and Small Signal Analysis. 11-1

AC Small Signal Analysis i, 11-2
AC Statement 11-4
AC Control Options 11-8
AC Analysisofan RC Network 11-9
Other AC Analysis Statements, 11-12
DISTO — AC Small-Signal Distortion Analysis 11-12
NOISE Statement — AC Noise Analysis 11-14
.SAMPLE Statement — Noise Folding Analysis 11-16
NET Statement - AC Network Analysis 11-17
References 11-26

12. Statistical Analysis and Optimization. 12-1
Analytical Model Types 12-2
Simulating Circuit and Model Temperatures 12-4
Temperature Analysis 12-6
TEMP Statement 12-7
Worst Case Analysis 12-7
Model Skew Parameters 12-8
Monte Carlo Analysis i 12-13
FUNCLIONS . .. 12-13
Monte Carlo Setup 12-14
Monte Carlo Output 12-15
.PARAM Distribution Function 12-16

XVii

Monte Carlo Parameter Distribution 12-17

Monte Carlo Examples 12-18
Worst Case and Monte Carlo Sweep Example 12-26
HSPICE InputFile 12-26
Transient Sigma Sweep Results 12-28
Monte CarloResults 12-30
Optimization 12-35
Optimization Control i 12-37
Simulation ACCUraCy it 12-37
Curve Fit Optimization 12-38
Goal Optimization 12-38
Timing Analysis 12-39
Optimization Syntaxiiinniinnnenn 12-40
Optimization Examples 12-46
MOS Level 3 Model DC Optimization 12-46
MOS Level 13 Model DC Optimization 12-51
RC Network Optimization 12-53
Optimizing CMOS Tristate Buffer 12-58
BJT S Parameters Optimization 12-63
BJT Model DC Optimization 12-66
Optimizing GAASFET ModelDC, 12-70
Optimizing MOS Op-ampottt e 12-73
13.Running Demonstration Files 13-1
Using the Demo Directory Tree i 13-2

XViii

Two-Bit Adder Demo 13-3

One-Bit Subcircuit 13-3
MOS Two-Bit Adder InputFile 13-4
MOS I-Vand C-V PlottingDemo 13-6
Plotting Variables 13-7
MOS I-V and C-V Plot Example InputFile 13-9
CMOS Output DriverDemot 13-10
Strategy ..o e 13-11
CMOS Output Driver Example InputFile 13-14
Temperature CoefficientsDemo 13-16
Input File, for Optimized Temperature Coefficients 13-17
Optimization Section i 13-17
Simulating Electrical Measurements 13-18
T2N2222 Optimization Example InputFile 13-19
Transient Measurements 13-20
Modeling Wide-Channel MOS Transistors 13-21
Demonstration InputFiles 13-24
Simulation Example Using AvanWaves A-2
Input Netlistand Circuit A-2
Executionand OutputFiles A-3
Simulation Graphical Outputin AvanWaves A-11
Simulation Example Using Cosmos-Scope v A-15
Input Netlistand Circuit A-15
Executionand OutputFiles A-17
View HSPICE Results in Cosmos-Scope A-17

XiX

XX

Preface

This preface includes the following sections:

What's New in This Release
About This Manual
Audience

Conventions

Customer Support

What's New in This Release

This section describes the new features, enhancements, and
changes included in Simulation and Analysis Manual version
2003.03. Unless otherwise noted, you can find additional information
about these changes later in this book.

New Features

See the Release Notes for information about new features and last-
minute changes.

XXi

Known Limitations and Resolved D/Es

Information about known problems and limitations, as well as about
resolved Defects and Enhancements (D/Es), is available in the
HSPICE Release Notes in SolvNet. 2003.03 is the last release of
HSPICE that uses the D/E terminology and numbering system; in
future releases, these defects and enhancements will be referred to
as Synopsys Technical Action Requests (STARS).

To see the HSPICE Release Notes:

1.

Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNet.

If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, click New Synopsys
User Registration.)

Click Release Notes in the Main Navigation section, find the
2003.03 Release Notes, then open the HSPICE Release Notes.

Improved Documentation

To improve its usefulness, HSPICE documentation has been
divided from the two thick manuals used in previous releases,
into five smaller manuals in the 2003.03 release. A table in the
HSPICE Release Notes maps the location of information from
the old manuals, to the equivalent location in the new manual set.

About This Manual

The Simulation and Analysis Manual describes how to use HSPICE
to simulate and analyze your circuit designs.

Preface: About This Manual

XXii

Audience

This manual is for logic designers and engineers who use Synopsys
HSPICE for circuit simulation and analysis.

Conventions

This manual uses the following conventions.

Commands

SYNTAX:

command_name [argument(s)]

argument types: keyword | value | tag=value | tag=keyword

Command Argument

Definition

keyword Keywords are identifiers that must be used as they
appear. They are shown in base font.

value Values are user-determined. They are shown in italic
text to distinguish them from commands and
keywords.

tag= Tags can be followed by either a value or a keyword.

value Tags and keywords are in the base font. Argument

keyword values are in italics to distinguish them from

commands, keywords, and tags.

Preface: Audience

XXiii

Symbol Definition

| A pipe symbol (|) represents the word “or” and separates
choices between two or more arguments.

An ellipsis (...) indicates that more than one argument can
be specified. Ellipses are used only for multiple arguments
with tags.

[] Open and closed square brackets indicate that the
enclosed argument is optional.

() Open and closed parenthesis indicate that there is a
choice between the enclosed arguments (two or more).
These are used only when a command has several groups
of argument choices; multiple pipe symbols (|), in this
case, would result in an ambiguous syntax.

SYNTAX:
report_node_i a[vg] | rfms] | p[eak] | h[ist] node_name(s)

For this command, a[vg], rf[ms], p[eak], and h[ist] are keywords—
choose one of these. The node_name(s) are user-determined.

EXAMPLE:

report _node_i a VDD GN\D
In this example, a is a keyword, and VDD and GND are values.

SYNTAX:

report_node_ic [a[ll]] [q[uoted]] [for=epic | spice] [time(s)]

For this command, a[ll] and g[uoted] are optional keywords. The tag
for=is part of an optional argument for which you can choose the
epic or spice keyword. The time(s) are user-determined and, in this
case, optional.

Preface: Conventions

XXiv

EXAMPLE:

report_node_ic all for=spice 1lu

In this example, al | is a keyword, f or = is atag, spi ceis a
keyword, and 1u is a value.

Menu Text, File Names, and Examples

Menu text appears in bold, as shown in the following example.

EXAMPLE 1:

To start setting up a run, select File > Design Data Setup.

File names are shown in the same font as the surrounding text, but
in italics.

EXAMPLE 2:

This is an example of a file_name.out being shown in text.
Examples are shown in a courier font as they might appear on your
screen. Each example is followed by an explanation. Anything

shown in the example that appears in the explanation is shown in the
same courier font used in the example.

EXAMPLE 3:

add_node_cap RS100 275

In the example, the capacitance value of node RS100 is increased
by 275 femtofarads.

Preface: Conventions

XXV

Customer Support

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services including software downloads, documentation on the Web,
and “Enter a Call With the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, click New Synopsys
User Registration.)

If you need help using SolvNet, click SolvNet Help in the column on
the left side of the SolvNet Web page.

Preface: Customer Support

XXVi

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

* Open acall to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required), then clicking “Enter a Call With the Support
Center.”

e Send an e-mail message to support_center@synopsys.com.

« Telephone your local support center.
- Call (800) 245-8005 from within the continental United States.
- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.

Preface: Customer Support

XXVii

Preface: Customer Support

XXViii

Overview

Synopsys HSPICE is an optimizing analog circuit simulator. It is the
Synopsys industrial-grade circuit analysis product. You can use it to
simulate electrical circuits in steady-state, transient, and frequency
domains.

This chapter explains the following topics:

* Applications
 Features
e Supported Platforms

e Simulation Structure

1-1

Applications

HSPICE is unequalled for fast, accurate circuit and behavioral
simulation. They facilitate circuit-level analysis of performance and
yield, using Monte Carlo, worst case, parametric sweep, and data-
table sweep analysis, and employ the most reliable automatic-
convergence capability.

HSPICE forms the cornerstone of a suite of Synopsys tools and
services that allow accurate calibration of logic and circuit model
libraries, to actual silicon performance.

The size of the circuits that HSPICE can simulate, is limited only by
memory. As a 32-bit application, HSPICE can address a maximum
of 2Gb or 4Gb of memory, depending on your system.

Features

Figure 1-1 Synopsys HSPICE Design Features

Transmission Line

Signal Integrity Monte Carlo

Worst Case Analysis

HSPICE ®

Circuit Cell
Optimization

Photocurrent/
Radiation Effects

Incremental Cell
Optimization Characterization
AC, DC,

Transient

Overview: Applications

1-2

Synopsys HSPICE is compatible with most SPICE variations, and
has the following additional features:

Superior convergence.
Accurate modeling, including many foundry models.
Hierarchical node naming and reference.

Circuit optimization for models and cells, with incremental or
simultaneous multiparameter optimizations in AC, DC, and
transient simulations.

Interpreted Monte Carlo and worst-case design support.

Input, output, and behavioral algebraics for cells with
parameters.

Cell characterization tools, to calibrate models for high-level logic
simulators.

Geometric lossy-coupled transmission lines for PCB, multi-chip,
package, and IC technologies.

Discrete component, pin, package, and vendor IC libraries.

AvanWaves interactively graphs and analyzes multiple
simulation waveforms.

If you suspend a simulation job, LSF license manager sends a
signal to that job, and HSPICE releases the occupied license.
Another simulation job can use that license, or the stopped job
can reclaim the license and continue from where you stopped it.
You can also submit simulation jobs with priority into the LSG
gueue; LSF automatically suspends low-priority simulation jobs,
to run high-priority simulation jobs. When a high-priority job
completes, LSF automatically releases the license back to the
lower-priority job, which resumes from the point where LSF
suspended it.

Overview: Features
1-3

Figure 1-2

Synopsys HSPICE Circuit Analysis Types

Parametric

Operating
Point

Monte Carlo

Optimization

Data Driven

Monte Carlo
analysis
supported in
Synopsys HSPICE
only

Pole-Zero

HSPICE

S-parameter

Optimization

Monte Carlo

Data Driven

Transient

Monte Carlo

Monte Carlo

Optimization

Mixed
AC/Transient

Data Driven

Figure 1-3 Synopsys HSPICE Modeling Technologies

Magnetics

40+ Industrial and
Academic Models

Lossy
Transmission
Lines

Device Models

Common

Model
Interface

IBIS

Mixed Signal

Diode

Tunnel
Diode

JFET/
GaAsfFET

Overview: Features
1-4

Simulation at the integrated circuit level, and at the system level,
requires careful planning of the organization and interaction between
transistor models and subcircuits. Methods that worked for small
circuits might have too many limitations when applied to higher-level
simulations.

Use the following HSPICE features to organize how simulation
circuits and models run:

Explicit include files — .INC statement.
* Implicit include files — .OPTION SEARCH = ‘lib_directory’.

» Algebraics and parameters for devices and models — .PARAM
Sstatement.

o Parameter library files — .LIB statement.

 Automatic model selector — LMIN, LMAX, WMIN, and WMAX
model parameters.

« Parameter sweep — SWEEP analysis statement.

« Statistical analysis — SWEEP MONTE analysis statement.
* Multiple alternative — . ALTER statement.

« Automatic measurements — .MEASURE statement.

« Condition-controlled netlists (IF-ELSEIF-ELSE-ENDIF
statements).

Overview: Features
1-5

Supported Platforms
Table 1-1 HSPICE Supported Platforms

Platform Operating System

Sun Ultra Solaris 2.5.1, 2.7, and 2.8

Sun Blade Solaris 2.8

HP PA UX 10.20, UX 11.00

IBM RS6000 AlIX 4.3 (4.3.3)

DEC Alpha OSF 4.0

PC Windows ME, 2000, NT 4.0, XP-Home, XP-Professional.

Linux RedHat 6.2, 7.0, 7.1, and 7.2 (Does not support MOSFET level 29 or 45).

Note: HSPICE supports a single AMD CPU for WinNT4.0, and RedHat 7.2. HSPICE is a 32-bit
executable.

Simulation Structure

Figure 1-4 Simulation Program Structure

| Simulation Experiment |

l Y Y Y Y
Single point it Statistical Timing
Analysis Optimization Sweep Worst Case Violations

l | +| ; | |
¢ L ¢ ¢ ¢ ¢

Cc!plglizlons Circuit Analysis Results Library Stimuli
Y
Y Y Y
|_boc |
Y
| Options |

Overview: Supported Platforms
1-6

Typically, you use experiments to analyze and verify complex
designs. These experiments can be simple sweeps, more complex
Monte Carlo and optimization analyses, or setup and hold violation
analyses of DC, AC, and transient conditions.

For each simulation experiment, you must specify tolerances and
limits to achieve the desired goals, such as optimizing or centering a
design. Common factors for each experiment are:

e process
« voltage

 temperature

e parasitics

HSPICE supports two experimental methods:

« Single point — a simple procedure that produces a single result,
or a single set of output data.

« Multipoint — performs an analysis (single point) sweep for each
value in an outer loop (multipoint) sweep.

The following are examples of multipoint experiments:

* Process variation — Monte Carlo or worst-case model parameter
variation.

» Element variation — Monte Carlo or element parameter sweeps.
» Voltage variation — VCC, VDD, or substrate supply variation.

« Temperature variation — design temperature sensitivity.

« Timing analysis — basic timing, jitter, and signal integrity analysis.

« Parameter optimization — balancing complex constraints, such
as speed versus power, or frequency versus slew rate versus
offset (analog circuits).

Overview: Simulation Structure
1-7

Data Flow

HSPICE accepts input and simulation control information from
several different sources. They can output results in a number of
convenient forms for review and analysis. Figure 1-5 on page 1-9
shows the overall data flow.

1. To begin design entry and simulation, create an input netlist file.

Most schematic editors and netlisters support the SPICE or
HSPICE hierarchical format.

2. HSPICE executes the analyses specified in the input file.

3. HSPICE stores the simulation results requested in either an
output listing file or (if you specified . orTi on PosT) a graph data file.

If you specified POST, HSPICE stores the circuit solution (in
either steady state, time, or frequency domain).

4. To view or plot the results for any nodal voltage or branch current,
use a high-resolution graphic output terminal or laser printer.

HSPICE provides a complete set of print and plot variables for
viewing analysis results.

The HSPICE programs include a textual command line interface. For
example, to execute the program, enter the hspice command, the
input file name, and the desired options. You can use the command
line at the prompt in a Unix shell, ora DOS command line, or click on
an icon in a Windows environment.

You can specify whether the HSPICE program simulation output
appears in an output listing file, or in a graph data file. HSPICE
creates standard output files to describe initial conditions (.ic
extension) and output status (.stO extension). In addition, HSPICE
creates various output files, in response to user-defined input
options—for example, HSPICE creates a <design>.tr0 file, in
response to a .TRAN transient analysis statement.

Overview: Simulation Structure
1-8

AvanWaves output display and analysis includes a graphical user
interface. Use the mouse to select options, and to execute
commands, in the AvanWaves windows. Refer to the AvanWaves
User Guide for instructions about how to use AvanWaves.

Figure 1-5 Overview of Data Flow

Command line input AvanWaves
—>| (graph and
analysis)
meta.cfg
(output >
configuration file)

a)\ <design>.tr#

hspice.ini . »| (graph data
(initialization file) output file)
HSPICE
. » Other output files
<d.eS|.gn>.sp . <design>.lis
(netlist input file) <design>.mt#

<design>.sw#
<design>.ms#
<design>.ac#
<design>.ma#
<design>.gr#

\ / <design>.pa#

A <design>.st#

Models and
device libraries

Y

command.inc <design>.ft#
(command include <design>.a2d
file — optional)
Printer or Graphics
plotter - hardcopy file [

Simulation Process Overview

Figure 1-6 on page 1-10 shows the HSPICE simulation process. The
following section summarizes the steps in a typical simulation.

Overview: Simulation Structure
1-9

Figure 1-6 Simulation Process

1. Invocation

(hspice -i demo.sp -0 demo.lis

2. Run script

3. Licensing

4. Simulation
configuration

5. Design input

6. Library input

7. Operating point

Initialization

8. Multipoint analysis

9. Single point analysis

10. Worst case .ALTER

11. Clean up

Y

Select version
Select best architecture
Run HSPICE

Y

Find license file in
LM_LICENSE_FILE
Get FLEXIm license token

Y

Read ~/meta.cfg or
Read <installdir>/meta.cfg

L]

Read input file: demo.sp
Open temp. files in $tmpdir
Open output file

Read hspice.ini file

L]

Read .INCLUDE statement files
Read .LIB
Read implicit include (.inc) files

Y

Read .ic file (optional)
Find operating point
Write .ic file (optional)

L]

Open measure data files .mt0
Initialize outer loop sweep
Set analysis temperature

L]

Open graph data file .trO
Perform analysis sweep

]

Process library delete/add
Process parameter and
topology changes

Y

Close all files
Release all tokens

Overview: Simulation Structure
1-10

2

Setup for Simulation

This chapter describes the required setup steps, and background
information that you should understand, before you run Synopsys
HSPICE to perform IC circuit analyses.

This chapter includes the following examples:

» Setting Environment Variables
e Using Wildcards

e Netlist Overview

2-1

Setting Environment Variables

HSPICE requires you to set the LM_LICENSE_FILE environment
variable. This variable specifies the full path to the license.dat
license file. Set the LM_LICENSE_FILE environment variable to
point to the HSPICE license file.

EXAMPLE:

If your HSPICE license file is in /usr/cad/hspice/license.dat path,
then enter:

setenv LM LI CENSE FI LE /usr/cad/ hspice/license. dat

Using Wildcards

You can use wildcards to match node names. For more information
about using wildcards in a configuration file, see Using Wildcards on
page 2-2.

The following statements support wildcards:

e .PRINT
- .PROBE
EXAMPLE:

. PRINT TRAN V(9?t *u)

This example prints out the results of a transient analysis, for the
voltage at the matched node name.

 The ? wildcard matches any single character. For example, 97?
matches 92, 9a, 9A, and 9%.

Setup for Simulation: Setting Environment Variables

2-2

* The * wildcard matches any string of zero or more characters.
For example:

- If your netlist includes a resistor named rl and a voltage
source named vin, then .print i(*) prints the current for both of
these elements: i(rl) and i(vin).

- .print v(0*) prints the voltages for all nodes whose names start
with o; if your netlist contains nodes named in and out, this
example prints only the v(out) voltage.

- If your netlist contains nodes named 0, 1, 2, and 3, then .print
v(0,*) or .print v(0 *) prints the voltage between node 0 and
each of the other nodes: v(0,1), v(0,2), and v(0,3).

SYNTAX:

. PROBE wi | dcar d_expression

The characters that formulate the wildcard_expression are:

Table 2-2 .PROBE Wildcard Syntax

Wildcard Description

* Matches any string of characters.

? Matches any single character.

[Matches any character that appears within the brackets. For example,

[123] matches 1, 2, or 3.

A hyphen, inside the brackets, indicates a character range. For example,
[0-9] is the same as [0123456789], and matches any digit character.

any other character | Matches itself.

Setup for Simulation: Using Wildcards
2-3

Wildcards must begin with a letter or a number. For example:

Table 2-3 Using Wildcards in .PROBE Statements

.probe v(*) <--- correct format

.probe * <--- incorrect format
.probe x* <--- correct format
Examples

The following examples use wildcards with .PRINT and .PROBE
statements. You must create an .admrc file to use these wildcards.

Probe all top-level nodes.
. PROBE v(*)

Probe all top-level nodes whose names start with a. For example:
al, a2, a3, a00, ayz.

. PROBE v(a*)

Print all first-level nodes, where zero-level are top-level nodes.
For example: X1.A, X4.554, Xab.abc123.

.PRINT v(*.*)

Probe all first-level nodes, where zero-level are top-level nodes.
For example: x1.A, x4.554, xab.abc123. This example creates
only waveform data, without an ASCII table of results.

. PROBE v(x*.*)
Print all second-level nodes. For example: x1.x2.a, xab.xdff.in,
.PRINT v(x*.*, *)

Match all first-level nodes with names that are exactly two
characters long. For example: x1.in, x4.12.

. PROBE v(x*.?7?)

Setup for Simulation: Using Wildcards

2-4

* Probe nodes that combine variables, with a specific range of
possible digits. This example outputs the x*.00 through x*.99
nodes. The node name must be two characters long, and must
be integers from 00 to 99, inclusive.

. PROBE v(x*.[0-9][0-9])

« Print all first-level nodes, where zero-level are top-level nodes,
that are only two characters long. However, the first character
must be either 1, 2, or 3, and the second character must be either
a, b, or c. For example: xdd.1b, xdd.2c, xy.3a.

. PRINT v(x*.[123][abc])
* Print all second-level nodes that start with a, b, c, d, or e.

.PRINT v(*.*.[a-e]*)

Netlist Overview

The circuit description syntax, for HSPICE, is compatible with the
SPICE input netlist format.

Basic Structure

Figure 2-1 on page 2-5 shows the basic structure of an input netlist.

Figure 2-1 Basic Netlist Structure

Title line: First line is automatically a comment

* Comments (all lines beginning with an asterisk)
*

Input control statements
Netlist body: description of circuit topology. —
.MODEL statements

*

.OPTION statements

Element and input
control statements

.OPTION with option statements Analysis/output
.PRINT and other output statements. —— control statements
Analysis statement (such as .POWER, .TRAN)

.END

Setup for Simulation: Netlist Overview
2-5

EXAMPLE:

1. This example of a simple netlist file, called inv_ckt.in, shows a
small inverter test case, which measures the timing behavior of
the inverter. To create the circuit:

2. Define the MOSFET models for the PMOS and NMOS
transistors of the inverter.

3. Insert the power supplies for both VDD and GND power rails.
4. Insert the pulse source to the inverter input.

This circuit uses transient analysis, and produces output graphical
waveform data, for the input and output ports of the inverter circuit.

* Sanple inverter circuit

* * %k %% N[B rmdels * k k k%

.MODEL n1 NMOS LEVEL=3 THETA=0.4 ...

. MODEL pl1 PMOS LEVEL=3 ...

* *x*xx* Define power supplies and sources *****
VDD VDD 0 5

VPULSE VIN O PULSE 0 5 2N 2N 2N 98N 200N
VG\ND G\D 0 O

* k*xx%kx Actual circuit topology *****

ML VOUT VIN VDD VDD pl

M2 VOUT VIN GND G\D nl

* x*%kx* Angl ysis statenment **x*x*

. TRAN 1n 300n

* k%kx%kx Qut put control statenents *****
. OPTI ON POST PROBE

. PROBE V(VIN) V(VQUT)

. END

Setup for Simulation: Netlist Overview

2-6

First Character

The first character in every line specifies how HSPICE interprets the
remaining line. Table 2-4 lists and describes the valid characters.

Table 2-4 First Character Descriptions

Line

If the First Character is...

Indicates

First line of a netlist

Any character

Comment line

Subsequentlines of netlist, and
all lines of included files

Netlist keyword

Element instantiation

*

Comment line

Continues previous line

The first line of a netlistis a comment, no matter what letter starts the
line. The first line of an included file is a normal line, not a comment.

EXAMPLE:

The . character at the start of the line below, indicates that .TRAN is

a keyword:

. TRAN 0. 5ns 20ns

Setup for Simulation: Netlist Overview
2-7

Adding Elements

Lines that add an instance of an element begin with a specific letter,
as shown in Table 2-5 .

Table 2-5 Element Identifiers

Letter (First Element Example Line

Character)

B IBIS buffer b_io_0nd_puO nd_pdO nd_out
nd_in0 nd_en0 nd_outofin0
nd_pc0 nd_gc0

C Capacitor Cbypass 1 0 10pf

D Diode D739D1

E Voltage-controlled voltage source Eal234K

F Current-controlled current source Fsub n1 n2 vin 2.0

G Voltage-controlled current source G12403010

H Current-controlled voltage source H3 4 5 Vout 2.0

I Current source IA26 1le-6

J JFET or MESFET J17 23 GAASFET

K Linear mutual inductor (general form) | K1L1L2 1

L Linear inductor LXab le-9

M MOS transistor M8341234N1

Q Bipolar transistor Q53678pnpl

R Resistor R10 21 10 1000

S T,UW Transmission line S1 ndl1 nd2 s_model2

\% Voltage source V1805

w Transmission Line W1inl 0 outl O N=1 L=1

X Subcircuit call X12 417 31 MULTI WN =100
LN=5

Setup for Simulation: Netlist Overview
2-8

Netlistinput processing is case insensitive, except for file names and
their paths. HSPICE does not limit the identifier length, line length, or
file size.

Comments and Line Continuation

The first line of a netlist is always a comment, regardless of its first
character; comments that are not the first line of the netlist require

either an asterisk (*) as the first character of the line, or a dollar sign
(%) directly in front of the comment anywhere on the line.

* You can insert all comment text, after and including the s,
anywhere in a line of code, not just at the beginning of a line (as
required when you use *).

» $is the preferred way to indicate comments, because of the
flexibility of its placement within the code.

« Line continuations require + as the first character in the line that
follows.

EXAMPLE:

.ABC Title Line (HSPICE ignores the
* netlist keyword on this |line, because the first |ine
* is always a conment)

* This line is a conment
.MODEL n1 NMOS $this is an exanple of an inline conment

* The followng line is a continuation
+ LEVEL = 3

Setup for Simulation: Netlist Overview
2-9

Software Conventions

Subcircuit Node Names

To assign subcircuit node names, HSPICE traces the node, from the
top level of the circuit, to the final subcircuit level. It then
concatenates the different level names, using . as a delimiter.

The last name must be a node name or an element.

EXAMPLE:

In Figure 2-2, the top-level (main) circuit is named ckt_xyz. This
circuit contains three subcircuits: subcktl, subckt2, and subckt3.
The subckt3 subcircuit contains another subcircuit, named subcktA.
To reference the node2 node, specify the path as follows:

subckt 3. subckt A. node?2

Figure 2-2 Example Top-Level Circuit

ckt_xyz
" subcktl | | subckt2 | . subcktd |
subcktA
enode?2

Reserved Keywords

Do not use any of these keywords as parameter names or node
names in your netlist.

EXAMPLE:

TI ME

Setup for Simulation: Netlist Overview

2-10

Reserved Operator Keywords

The following symbols are reserved operator keywords:

0 =

Do not use these symbols as part of any parameter or node name
that you define. Using any of these reserved operator keywords as

names causes a syntax error, and HSPICE stops immediately.

Scale Factors for Numbers

Numbers can use any of the following formats:

* Integers.

* Floating-point values.

» A floating-point number, followed by an integer exponent
(scientific notation).

* Aninteger, or a floating-point number, followed by one of the

scale factors listed in Table 2-6 on page 2-11.

Table 2-6 Scale Factors

Scale Factor Prefix Multiplying Factor
T tera le+12
G giga le+9
MEG or X mega le+6
K kilo le+3
M milli le-3
U micro le-6
N nano le-9
P pico le-12
F femto le-15
A atto le-18

Setup for Simulation: Netlist Overview

2-11

Note: Ais not a scale factor in a character string that contains amps.
For example, HSPICE interprets the 20amps string as 20e-

18mpb (20"8mps), but it correctly interprets 20amps as 20
amperes of current, not as 20e-18mps (20'18mps).

Setup for Simulation: Netlist Overview
2-12

Simulation Input and Controls

This chapter describes the input requirements, methods of entering
data, and Synopsys HSPICE statements used to enter input. This
chapter explains the following topics:

* Using Netlist Input Files

* Input Netlist File Composition

« Using Subcircuits

» Discrete Device Libraries

e Using Standard Input Files

o Starting HSPICE

e Improving Simulation Performance with Multithreading

« HSPICE Output Files

3-1

Using Netlist Input Files

This section describes how to use standard netlist input files.

Input Netlist File Guidelines

HSPICE operates on an input netlist file, and stores results in either
an output listing file or a graph data file. An input file, with the name
<design>.sp (use this form for clarity), contains the following:

» Design netlist (subcircuits, macros, power supplies, and so on).
« Statement naming the library to use (optional).
« Specifies the type of analysis to run (optional).
» Specifies the type of output desired (optional).

To generate input netlist and library input files, HSPICE uses either
a schematic netlister or a text editor.

Statements in the input netlist file can be in any order, except that the
first line is a title line, and the last .ALTER submodule must appear
at the end of the file, before the .END statement.

Note: If you do not place an .END statement and a [Return] at the
end of the input netlist file, HSPICE issues an error message.

Input Line Format
* Theinput netlist file cannot be in a packed or compressed format.
 The input reader can accept an input token, such as:

- a statement name.

- anode name.

- a parameter name or value.

Any valid string of characters, between two token delimiters, is a
token. See Delimiters on page 3-4.

Simulation Input and Controls: Using Netlist Input Files

3-2

An input filename, statement, or equation can be up to 1024
characters long.

HSPICE ignores differences between upper and lower case in
input lines, except in quoted filenames.

To continue a statement on the next line, in HSPICE, enter a plus
(+) sign as the first non-numeric, non-blank character in the next
line.

To continue all HSPICE statements, including quoted strings
(such as paths and algebraics), use a backslash (\) or a double
backslash (\\) at the end of the line that you want to continue.

- A single backslash preserves white space.

- A double backslash squeezes out any white space between
the continued lines. The double backslash guarantees that
path names are joined without interruption.

Input lines can be 1024 characters long, so you generally need
to fold and continue a line only to improve readability.

You can add comments anywhere in an HSPICE file. Lines that
begin with an asterisk (*) are comments. To place a comment on
the same line as input text, enter a dollar sign ($), preceded by
one or more blanks, after the input text.

If your input netlist file includes any special control characters,
HSPICE reports an error. Most systems cannot print control
characters, so the error message is ambiguous, because the
error message cannot show the erroneous character. Use

the .OPTION BADCHAR statement to locate such errors. The
default for BADCHAR is off.

Names

Names must begin with an alphabetic character, but thereafter
can contain numbers and the following characters:

Nt S % o+ - < > []

Simulation Input and Controls: Using Netlist Input Files
3-3

Names are input tokens. Token delimiters must precede and
follow these names. See Delimiters on page 3-4.

Names can be 1024 characters long.

Names are not case sensitive.

Delimiters

An input token is any item in the input file that HSPICE
recognizes. Input token delimiters are: tab, blank, comma, equal
sign (=), and parentheses ().

Single or double quotes delimit expressions and filenames.
Colons delimit element attributes (for example, M1:VGS).

Periods indicate hierarchy. For example, X1.X2.nl is the n1 node
on the X2 subcircuit of the X1 circuit.

Nodes

Node identifiers can be up to 1024 characters long, including
periods and extensions.

Numerical node names are valid in the range of O through
9999999999999999 (1-1E16).

HSPICE ignores leading zeros in node numbers.

HSPICE ignores trailing characters in node numbers. For
example, node 1A is the same as node 1. Exception: HSPICE
recognizes the following special alphabetic trailing characters (a,
d,e f,g,i,k,mn,o,p,t, u, Xx).

A node name can begin with any of these characters: # ! %.

To make nodes global across all subcircuits, use a .GLOBAL
statement.

The 0, GND, GND!, and GROUND node names all refer to the
global HSPICE ground. Simulation treats nodes with any of these
names as a ground node, and produces v(0) into the output files.

Simulation Input and Controls: Using Netlist Input Files

3-4

Instance Names

The names of element instances begin with the element key
letter (for example, M for a MOSFET element, D for a diode, R for
a resistor, and so on), except in subcircuits.

Subcircuit instance names begin with X. (Subcircuits are
sometimes called macros or modules.)

Instance names are limited to 1024 characters.

.OPTION LENNAM defines the length of names in printouts
(default = 8).

Hierarchy Paths

A period indicates path hierarchy.
Paths can be up to 1024 characters long.

Path numbers compress the hierarchy, for post-processing and
listing files.

You can find path number cross references in the listing and in
the <design>.pa0 file.

.OPTION PATHNUM controls whether the list files show full path
names or path numbers.

Numbers

You can enter numbers as integer or real.

Numbers can use exponential format or engineering key letter
format, but not both (1e-12 or 1p, but not 1e-6u).

To designate exponents, use D or E.
.OPTION EXPMAX limits the exponent size.

HSPICE interprets trailing alphabetic characters as units
comments.

HSPICE does not check units comments.

Simulation Input and Controls: Using Netlist Input Files
3-5

.OPTION INGOLD controls the format of numbers in printouts.
.OPTION NUMDGT = x controls the listing printout accuracy.

.OPTION MEASDGT = x controls the measure file printout
accuracy.

.OPTION VFLOOR = x specifies the smallest voltage for which
HSPICE prints the value. Smaller voltages print as O.

Parameters and Expressions

Parameter names in HSPICE use Hspice name syntax rules,
except that names must begin with an alphabetic character. The
other characters must be either a number, or one of these
characters:

L #$ %[]

To define parameter hierarchy overrides and defaults, use
the .OPTION PARHIER = global | local statement.

If you create multiple definitions for the same parameter or
option, HSPICE uses the last parameter definition or .OPTION
statement, even if that definition occurs later in the input than a
reference to the parameter or option. HSPICE does not warn you
when you redefine a parameter.

You must define a parameter, before you use that parameter to
define another parameter.

When you select design parameter names, be careful to avoid
conflicts with parameterized libraries.

To delimit expressions, use single or double quotes.
Expressions cannot exceed 256 characters.

For improved readability, use a double slash (\\) at end of a line,
to continue the line.

You can nest functions up to three levels.

Simulation Input and Controls: Using Netlist Input Files

3-6

* Any function that you define can contain up to two arguments.

» Use the PAR (expression or parameter) function to evaluate
expressions in output statements.

Input Netlist File Structure

An input netlist file should consist of one main program, and one or
more optional submodules. Use a submodule (preceded by

an . ALTER Sstatement) to automatically change an input netlist file;
then rerun the simulation with different options, netlist, analysis
statements, and test vectors.

You can use several high-level call statements (.INCLUDE, .LIB
and .DEL LIB) to restructure the input netlist file modules. These
statements can call netlists, model parameters, test vectors,
analysis, and option macros into a file, from library files or other files.
The input netlist file also can call an external data file, which contains
parameterized data for element sources and models.

Schematic Netlists

HSPICE typically uses netlisters to generate circuits from
schematics, and accept either hierarchical or flat netlists. The normal
SPICE netlisters flatten all subcircuits, and rename all nodes to
numbers. Avoid flat netlisters if possible.

The process of creating a schematic involves:
« Symbol creation with a symbol editor.

» Circuit encapsulation.

* Property creation.

e Symbol placement.

« Symbol property definition.

« Wire routing and definition.

Simulation Input and Controls: Using Netlist Input Files
3-7

Table 3-1

Input Netlist File Sections and Chapter References

Sections Examples Chapter | Definition
Title .TITLE 3 The first line in the netlist is the
title of the input netlist file.
Set-up .OPTION 9 Sets conditions for simulation.
.IC or NODESET 10 Initial values in circuit and
subcircuit.
.PARAM 7 Set parameter values in the
netlist.
.GLOBAL 7 Set node name globally in netlist.
Sources Sources and digital inputs 5 Sets input stimuli (I or V).
Netlist Circuit elements 3-4 Circuit for simulation.
.SUBKCT, .ENDS 3 Subcircuit definitions.
Analysis .DC, .TRAN, .AC, etc. 10-12 Statements to perform analyses.
.SAVE and .LOAD 10 Save and load operating point
info.
.DATA 3 Create table for data-driven
analysis.
.TEMP 3 Set analysis temperature.
Output .PRINT, .PLOT, .GRAPH, .PROBE | 8 Statements to output variables.
.MEASURE 8 Statement to evaluate and report
user-defined functions of a circuit.
Library, .INCLUDE 3 General include files.
Model and . . _
File .MALIAS 3 Assigns an alias to a diode, BJT,
|nclusi0n JFET, or MOSFET.
.MODEL 3,8 Element model descriptions.
.LIB 3 Library.
.<UN>PROTECT 3 Control printback to output listing.

Simulation Input and Controls: Using Netlist Input Files

3-8

Table 3-1

Input Netlist File Sections and Chapter References (Continued)

Sections Examples Chapter | Definition
Alter blocks | .ALIAS 3 Renames a previous model.
ALTER 3 Sequence for in-line case
analysis.
.DELETE LIB 3 Removes previous library
selection.
End of .END 3 Required statement; end of netlist.
netlist

Input Netlist File Composition

Title of Simulation and .TITLE Statement

You set the simulation title in the first line of the input file. HSPICE
always reads this line, and uses it as the title of the simulation,
regardless of the line’s contents. The simulation prints the title
verbatim, in each section heading of the output listing file.

As shown in the first syntax below, to set the title, you can place
a .TITLE statement on the first line of the netlist. However, HSPICE
does not require the .TITLE syntax.

In the second form shown, the string is the first line of the input file.
The first line of the input file is always the implicit title. If any

statement appears as the first line in a file, simulation interprets it as
a title, and does not execute it.

An .ALTER statement does not support use the .TITLE statement.
To change a title for a .ALTER statement, place the title content in
the .ALTER statement itself.

Simulation Input and Controls: Input Netlist File Composition

3-9

SYNTAX:
. TITLE <string_of _up _to_72 characters>

or

<string_of up_to 72 characters>

Comments

An asterisk (+) as the first non-blank character, or an inline dollar sign
(s) that is not the first character on the line, indicates a comment
statement.

SYNTAX:
* <comment _on_a line_by itself>

or
<HSPI CE_statenent> $ <comment fol | owi ng_HSPI CE i nput >

EXAMPLE:

*RF = 1K GAIN SHOULD BE 100

$ MAY THE FORCE BE WTH MY CIRCU T
VIN1 O PL OO 5V 5NS $ 10v 50ns
R12 1 0 1MEG $ FEED BACK

You can place comment statements anywhere in the circuit
description. The * must be in the first space on the line.

The $ must be used for comments that do not begin at the first space
on a line (for example, for comments that follow simulator input on

the same line). The $ must be preceded by a space or comma, if it
is not the first nonblank character. You can place the $ within node

or element names.

Simulation Input and Controls: Input Netlist File Composition

3-10

Element and Source Statements

Element statements describe the netlists of devices and sources.
Use nodes to connect elements to one another. Nodes can be either
numbers or names. Element statements specify:

* Type of device.
* Nodes to which the device is connected.
» Operating electrical characteristics of the device.

Element statements can also reference model statements that
define the electrical parameters of the element.

For descriptions of element statements for the various types of
supported elements, see the chapters about individual types of
elements, in this user guide.

SYNTAX:

el nane <nodel node2 ... nodeN> <mane>
+ <pnanel = val 1> <pnane2 = val 2> <M = val >

or

el nane <nodel node2 ... nodeN> <mane>
+ <pnane = ’'expression > <M = val >

or

el nane <nodel node2 ... nodeN> <mane>
+ <vall val2 ... valn>

Simulation Input and Controls: Input Netlist File Composition
3-11

Table 3-2

Element Name Syntax

Parameter

Description

elname

Element name that cannot exceed 1023 characters, and must begin with a
specific letter for each element type:

IBIS buffer

Capacitor

Diode

Dependent current and voltage sources
Current (inductance) source

JFET or MESFET

Mutual inductor

Inductor model or magnetic core mutual inductor model
MOSFET

BJT

Resistor

Transmission line

Voltage source

Subcircuit call

'I'I
@
T

(RN)

X<OWITOZIrRARC—MUO®
=
<
=

nodel ...

Node names identify the nodes that connect to the element. Node names
must begin with a letter, followed by up to 1023 additional alphanumeric
characters. You cannot use the following characters in node names: = (),’
<space>

mname

HSPICE requires a model reference name for all elements, except passive
devices.

pnamel ...

An element parameter name identifies the parameter value that follows this
name.

expression

Any mathematical expression containing values or parameters, such as
paraml * val2

vall ...

Value of the pnamel parameter, or to the corresponding model node. The
value can be a number or an algebraic expression.

M = val

Element multiplier. Replicates the val element times, in parallel. Do not
assign a negative value or zero as the M value.

Simulation Input and Controls: Input Netlist File Composition

3-12

EXAMPLE 1:
QL234567 4000 5000 6000 SUBSTRATE BJTMODEL AREA = 1.0

The preceding example specifies a bipolar junction transistor, with its
collector connected to node 4000, its base connected to node 5000,
its emitter connected to node 6000, and its substrate connected to
the SUBSTRATE node. The BJTMODEL name references the
model statement, which describes the transistor parameters.

ML ADDR SI GL GND SBS N1 10U 100U
The preceding example specifies a MOSFET named M1, where:

« drain node=ADDR.

e gate node=SIG1.

» source node=GND.

e substrate nodes= SBS.

The preceding element statement calls an associated model
statement, N1. The MOSFET dimensions are width = 100 microns
and length = 10 microns.

EXAMPLE 2:
ML ADDR SI GL GND SBS N1 wl+w | 1+
The preceding example specifies a MOSFET named m, where:
e drain node=ADDR.
e gate node=SIG1.
» source node=GND.
e substrate nodes= SBS.

The preceding element statement calls an associated model
statement, N1. MOSFET dimensions are algebraic expressions
(width = wl+w, and length = 11+]).

Simulation Input and Controls: Input Netlist File Composition
3-13

SUBCKT or .MACRO Statement

You can use .subckt and .macro statements in HSPICE.

SYNTAX:
. SUBCKT subnam nl < n2 n3 ..> < parnam = val ..>
. ENDS
or
. MACRO subnam nl < n2 n3 ...> < parnam = val ..>
. EQOM
Table 3-3 .SUBCKT Syntax
Parameter | Description
subnam Specifies a reference name for the subcircuit model call.
nl... Node numbers for external reference; cannot be the ground node (zero). Any

element nodes that are in the subcircuit, but are not in this list, are strictly local,
with three exceptions:

1. Ground node (zero).
2. Nodes assigned using BULK = node in MOSFET or BJT models.
3. Nodes assigned using the .GLOBAL statement.

parnam A parameter name set to a value. Use only in the subcircuit. To override this
value, assign it in the subcircuit call, or set a value in a .PARAM statement.

EXAMPLE:

*FI LE SUB2. SP TEST OF SUBCI RCU TS
. OPTI ON LI ST ACCT
Vi101
.PARAM P5 = 5 P2 = 10
.SUBCKT SUB1 1 2 P4 = 4
Rl 10 P4
R2 2 0 P5
X112 SUB2 P6 =7
X2 1 2 SuB2
. ENDS

Simulation Input and Controls: Input Netlist File Composition
3-14

*

.MACRO SUB2 1 2 P6 = 11

Rl 12 P6
R2 2 0 P2

. EOM
X112 SUB1L P4 =6
X2 3 4 SUB1 P6 = 15

X3 3 4 SUB2

*

.MODEL DA D CJA = CAJA AP = CAJP VRB = -20 I S = 7.62E-18
+ PH = .5 EXA = .5 EXP = .33

. PARAM CAJA = 2.535E-16 CAJP = 2.53E-16

. END

The preceding example defines two subcircuits: sus1 and sus2. These
are resistor divider networks, whose resistance values are
parameters (variables). The X1, X2, and X3 statements call these
subcircuits. Because the resistor values are different in each call,
these three calls produce different subcircuits.

.ENDS or .EOM Statement

SYNTAX:
. ENDS <SUBNAM>
. EOM <SUBNAM>

EXAMPLE:

. ENDS OPAMP
. EOM MAC3

This statement terminates a subcircuit named subname. If you omit
subname, this statement terminates all subcircuit definitions.

This statement must be the last for any subcircuit definition.

You can nest subcircuit references (calls) within subcircuits, in
HSPICE.

Simulation Input and Controls: Input Netlist File Composition
3-15

Table 3-

Subcircuit Call Statement

SYNTAX:

Xyyy nl <n2 n3 .> subnam <parnam = val .> <M = val >

4 Subcircuit Call Syntax

Parameter | Description

Xyyy Subcircuit element name. Must begin with an X, followed by up to 15
alphanumeric characters.

nl... Node names, for external reference.

subnam Subcircuit model reference name.

parnam A parameter name set to a value (val), for use only in the subcircuit. It overrides
a parameter value in the subcircuit definition, but is overridden by a value set in
a .PARAM statement.

M Multiplier. Makes the subcircuit appear as M subcircuits in parallel. You can use

this multiplier to characterize circuit loading. HSPICE does not need additional
calculation time, to evaluate multiple subcircuits. Do not assign a negative value
or zero as the M value.

EXAMPLE 1:
X1 2 4 17 31 MUTI WN = 100 LN = 5

The above example calls a subcircuit model named MULTI. It
assigns the WN = 100 and LN = 5 parameters in the .SUBCKT
statement (not shown). The subcircuit name is X1. All subcircuit
names must begin with X.

EXAMPLE 2:

. SUBCKT YYY NODE1 NODE2 VCC = 5V
.1 C NODEX = VCC
R1 NODE1 NCDEX 1
R2 NODEX NCDEZ2 1
. EOM
XYYY 5 6 YYY VCC = 3V

Simulation Input and Controls: Input Netlist File Composition

3-16

The preceding example defines a subcircuit named YYY. The
subcircuit consists of two 1-ohm resistors in series. The .IC
statement uses the VCC passed parameter to initialize the NODEX
subcircuit node.

Note: If you initialize a non-existent subcircuit node, HSPICE
generates a warning message. This can occur if you use an
existing .ic file (initial conditions) to initialize a circuit that you
modified since you created the .ic file.

Element and Node Naming Conventions

Node Names

Nodes are the points of connection between elements in the input
netlist file. You can use either names or numbers to designate nodes.
Node numbers can be from 1 to 999999999999999; node number 0
Is always ground. HSPICE ignores letters that follow numbers in
node names. Node names must begin with a letter, followed by up to
1023 characters.

In addition to letters and digits, node names can include the following
characters:

Table 3-5 Node Name Legal Characters

Symbol Definition

+ plus sign

- minus sign or hyphen

* asterisk

/ slash

$ dollar sign
pound sign

[left and right square brackets

! exclamation mark

Simulation Input and Controls: Input Netlist File Composition
3-17

Table 3-5 Node Name Legal Characters

Symbol Definition

<> left and right angle brackets
_ underscore

% percent sign

If you use braces { } in node names, HSPICE changes them to
brackets []. You cannot use the following characters in node names:

Table 3-6 Node Name lllegal Characters

Symbol | Definition

(left and right parentheses

comma

= equal sign

apostrophe

blank space

Also, period (.) is reserved for use as a separator between the
subcircuit name and the node name:

<subci r cui t Name>. <nodeNane>

The sorting order for operating point nodes is:

a-z, !, #, %, % *, + -, [/

Instance and Element Names

Element names in HSPICE begin with a letter designating the
element type, followed by up to 1023 alphanumeric characters.
Element type letters are R for resistor, C for capacitor, M for a
MOSFET device, and so on (see Element and Source Statements
on page 3-11).

Simulation Input and Controls: Input Netlist File Composition
3-18

Subcircuit Node Names
HSPICE assigns two subcircuit node names.

« To assign the first name, HSPICE uses the (.) extension to
concatenate the circuit path name with the node name—for
example, X1.XBIAS.M5.

Node designations that start with the same number, followed by
any letter, are the same node. For example, 1c and 1d are the
same node.

 The second subcircuit node name is a unique number that
HSPICE automatically assigns to an input netlist subcircuit. The
(:) extension concatenates this number with the internal node
name, to form the entire subcircuit's node name (for example,
10:M5). The output listing file cross-references the node name.

To indicate the ground node, use either the number o, the name anp,
or IGND. Every node should have at least two connections, except
for transmission line nodes (unterminated transmission lines are
permitted) and MOSFET substrate nodes (which have two internal
connections). Floating power supply nodes are terminated with a 1-
megohm resistor and a warning message.

Path Names of Subcircuit Nodes

A path name consists of a sequence of subcircuit names, starting at
the highest-level subcircuit call, and ending at an element or bottom-
level node. Periods separate the subcircuit names in the path name.
The maximum length of the path name, including the node name, is
1024 characters.

You can use path names in .PRINT, .PLOT, .NODESET, and .IC
statements, as another way to reference internal nodes (nodes not
appearing on the parameter list). You can use the path name to
reference any node, including any internal node. Subcircuit node and
element names follow the rules shown in Figure 3-1 on page 3-20.

Simulation Input and Controls: Input Netlist File Composition
3-19

Figure 3-1 Subcircuit Calling Tree, with Circuit Numbers

and Instance Names

0 (CKT)
1 (X1) 2 (X2)
3 (X3) 4 (X4)
n (abc) is
‘ ‘ circuit number (instance name)
sig24 sig25 sig26

In Figure 3-1 on page 3-20, the path name of the sig25 node in the
X4 subcircuit is X1.X4.sig25. You can use this path in HSPICE
statements, such as:

. PRINT v(X1. X4. si g25)

Abbreviated Subcircuit Node Names

In HSPICE, you can use circuit numbers as an alternative to path
names, to reference nodes or elements in .PRINT, .PLOT,
.NODESET, or .IC statements. Compiling the circuit assigns a circuit
number to all subcircuits, creating an abbreviated path name:

<subckt - nun®>: <nane>

The subcircuit name and a colon precede every occurrence of a
node or element in the output listing file. For example, 4:INTNODE1
Is a node named INTNODEL, in a subcircuit assigned the number 4.

Any node not in a subcircuit has a 0O: prefix (O references the main
circuit). To identify nodes and subcircuits in the output listing file,
HSPICE uses a circuit number that references the subcircuit where
the node or element appears.

Simulation Input and Controls: Input Netlist File Composition

3-20

Abbreviated path names let you use DC operating point node
voltage output, as input in a .NODESET statement, for a later run.

You can copy the part of the output listing titled Operating Point
Information or you can type it directly into the input file, preceded by
a .NODESET statement. This eliminates recomputing the DC
operating point in the second simulation.

Automatic Node Name Generation

HSPICE can automatically assign internal node names. To check
both nodal voltages and branch currents, you can use the assigned
node name when you print or plot. HSPICE supports several special
cases for node assignment —for example, simulation automatically
assigns node 0 as a ground node.

For CSOS (CMOS Silicon on Sapphire), if you assign a value of -1
to the bulk node, the name of the bulk node is B#. Use this name to
print the voltage at the bulk node. When printing or plotting current—
for example .PLOT I(R1)—HSPICE inserts a zero-valued voltage
source. This source inserts an extra node in the circuit named vnn,
where nn is a number that HSPICE automatically generates; this
number appears in the output listing file.

.GLOBAL Statement

The .GLOBAL statement globally assigns a node name, in HSPICE.
This means that all references to a global node name, used at any
level of the hierarchy in the circuit, connect to the same node.

The most common use of a .GLOBAL statement is if your netlist file
includes subcircuits. This statement assigns a common node name
to subcircuit nodes. Another common use of .GLOBAL statements is
to assign power supply connections of all subcircuits. For

example, .GLOBAL VCC connects all subcircuits with the internal
node name VCC.

Simulation Input and Controls: Input Netlist File Composition
3-21

Ordinarily, in a subcircuit, the node name consists of the circuit
number, concatenated to the node name. When you use a .GLOBAL
statement, HSPICE does not concatenate the node name with the
circuit number, and assigns only the global name. You can then
exclude the power node name in the subcircuit or macro call.

SYNTAX:
. GLOBAL nodel node2 node3 ...

In this syntax, nodel specifies global nodes, such as supply and
clock names; overrides local subcircuit definitions.

EXAMPLE:

This example shows global definitions for VDD and input_sig nodes.

. GLOBAL VDD input_sig

.TEMP Statement

To specify the circuit temperature for a HSPICE simulation, use the
.TEMP statement, or the TEMP parameter in the .DC, .AC, and
.TRAN statements. HSPICE compares the circuit simulation
temperature against the reference temperature in the TNOM control
option. HSPICE uses the difference between the circuit simulation
temperature and the TNOM reference temperature to define
derating factors for component values. For information about
temperature analysis, see Temperature Analysis on page 12-6.

HSPICE permits only one temperature for the entire circuit.

SYNTAX:
.TEMP t1 <t2 <t3 ...>>

In this syntax, t1 t2 are the temperatures, in °C, at which HSPICE
simulates the circuit.

Simulation Input and Controls: Input Netlist File Composition

3-22

EXAMPLE 1:
. TEMP -55.0 25.0 125.0

The .TEMP statement sets the circuit temperatures for the entire
circuit simulation. To simulate the circuit, using individual elements
or model temperatures, HSPICE uses:

« Temperature, as set in the .TEMP statement.
« TNOM option setting (or the TREF model parameter).

« DTEMP element temperature.

EXAMPLE 2:

. TEMP 100

D1 N1 N2 DMOD DTEMP=30

D2 NA NC DMOD

R1 NP NN 100 TCl=1 DTEMP=-30

.MODEL DMOD D | S=1E-15 VJ=0.6 CIA=1. 2E-13 CIP=1. 3E-14
+ TREF=60. 0

In this example:

« The .TEMP statement sets the circuit simulation temperature to
100°C.

* You do not specify TNOM, so it defaults to 25°C.

» The temperature of the diode is 30°C above the circuit
temperature, as set in the DTEMP parameter.

That is:

e Diltemp =100°C + 30°C = 130°C.

« HSPICE simulates the D2 diode at 100°C.
 R1 simulates at 70°C.

Simulation Input and Controls: Input Netlist File Composition
3-23

Because the diode model statement specifies TREF at 60°C,
HSPICE derates the specified model parameters by:

 70%xC (130xC - 60°C) for the D1 diode.
e 40xC (100xC - 60°C) for the D2 diode.
o 45xC (70°C - TNOM) for the R1 resistor.

.DATA Statement

In data-driven analysis, you can modify any number of parameters,
then use the new parameter values to perform an operating point,
DC, AC, or transient analysis. An array of parameter values can be
either inline (in the simulation input file) or stored as an external
ASCII file. The .DATA statement associates a list of parameter
names with corresponding values in the array.

HSPICE supports the full .DATA functionality.
» Data-driven analysis.
» Inline or external data files.

Data-driven analysis syntax requires a .DATA statement, and an
analysis statement that contains a DATA = dataname keyword.

You can use the .DATA statement to concatenate or column-
laminate data sets, to optimize measured |-V, C-V, transient, or
s-parameter data.

You can also use the .DATA statement for a first or second sweep
variable, when you characterize cells, and test worst-case corners.
Simulation reads data measured in a lab, such as transistor I-V data,
one transistor at a time, in an outer analysis loop. Within the outer
loop, the analysis reads data for each transistor (IDS curve, GDS
curve, and so on), one curve at a time, in an inner analysis loop.

Simulation Input and Controls: Input Netlist File Composition

3-24

The .DATA statement specifies parameters that change values, and
the sets of values to assign during each simulation. The required
simulations run as an internal loop. This bypasses reading-in the
netlist and setting-up the simulation, which saves computing time. In
internal loop simulation, you can also plot simulation results against
each other, and print them in a single output.

You can enter any number of parameters in a .DATA block.

The .AC, .DC, and .TRAN statements can use external and inline
data provided in .DATA statements. The number of data values per
line does not need to correspond to the number of parameters. For
example, you do not need to enter 20 values on each line in

the .DATA block, if each simulation pass requires 20 parameters: the
program reads 20 values on each pass, no matter how you format
the values.

Each .DATA statement can contain up to 50 parameters. If you need
more than 50 parameters in a single .DATA statement, place 50 or
fewer parameters in the .DATA statement, and use .ALTER
statements for the remaining parameters.

HSPICE refers to .DATA statements by their datanames, so each
dataname must be unique. HSPICE support three .DATA statement
formats:

* Inline data

« Data concatenated from external files

« Data column laminated from external files
These formats are described below.

« The MER and LAM keywords tell HSPICE to expect external file
data, rather than inline data.

 The FILE keyword denotes the external filename.

Simulation Input and Controls: Input Netlist File Composition
3-25

* You can use simple file names, such as out.dat, without the
single or double quotes (‘" or “”), but use the quotes when file
names start with numbers, such as 1234.dat.

* File names are case sensitive on Unix systems.

For more details about using the .DATA statement in different types
of analysis, see Chapter 8, “Simulation Options”, Chapter 9,
“Initializing DC/Operating Point Analysis”, and Chapter 10,
“Transient Analysis”.

SYNTAX:
Operating point:
. DC DATA = dat anane

DC sweep:

.DCvin 1 5 .25 SWEEP DATA = dat anane
AC sweep:

.AC dec 10 100 10neg SWEEP DATA = dat anane
TRAN sweep:

. TRAN 1n 10n SWEEP DATA = dat anane

For data-driven analysis, specify the start time (time 0) in the
analysis statement, so analysis correctly calculates the stop time.

Inline .DATA Statement

Inline data is parameter data, listed in a .DATA statement block. The
datanm parameter, in a .DC, .AC, or .TRAN analysis statement,
calls this statement.

SYNTAX:

. DATA dat anm pnaml <pnan pnanB8 ... pnanmxxx >
+ pval 1<pval 2 pval 3 ... pval xxx>

+ pvall’ <pval 2’ pval 3° ... pval xxx’ >

. ENDDATA

Simulation Input and Controls: Input Netlist File Composition

3-26

Table

3-7 .DATA Syntax

Parameter | Description

datanm Specifies the data name, referenced in the .TRAN, .DC, or .AC statement.

pnami

Specifies the parameter names used for source value, element value, device
size, model parameter value, and so on. You must declare these names in
a .PARAM statement.

pvali

Specifies the parameter value.

The number of parameters that HSPICE reads, determines the
number of columns of data. The physical number of data numbers
per line does not need to correspond to the number of parameters.
For example, if the simulation needs 20 parameters, you do not need
20 numbers per line.

EXAMPLE:
.TRAN 1n 100n SVEEP DATA= devi nf
.AC DEC 101hz 10khz SWEEP DATA= devi nf
.DC TEMP-55125 10 SVEEP DATA= devi nf
. DATAdevi nfwi dth length thresh cap
+50u 30u 1. 2v 1. 2pf
+ 25u 15u 1.0v 0. 8pf
+ 5u 2u 0.7v 0. 6pf
. ENDDATA

HSPICE performs the above analyses for each set of parameter
values defined in the .DATA statement. For example, the program
first uses the width = 50u, length = 30u, thresh = 1.2v, and

cap = 1.2pf parameters to perform .TRAN, .AC, and .DC analyses.

HSPICE then repeats the analyses for width = 25u, length = 15u,
thresh = 1.0v, and cap = 0.8pf, and again for the values on each
subsequent line in the .DATA block.

Simulation Input and Controls: Input Netlist File Composition

3-27

EXAMPLE:

The following is an example of .DATA as the inner sweep:

ML 12 3 0NW=250ulLlL=LN
VGS 2 0 0.0v
VBS 3 0 VBS
VDS 1 0 VDS
.PARAM VDS = 0 VBS = 0 L =

. DC DATA = vdot

. DATA vdot
VBS VDS L
0 0.1 1.5u
0 0.1 1.0u
0 0.1 0. 8u
-1 0.1 1.0u
-2 0.1 1.0u
-3 0.1 1.0u
0 1.0 1.0u
0 5.0 1.0u
. ENDDATA

1. Ou

The preceding example performs a DC sweep analysis for each set

of VBS, VDS, and L parameters

in the .DATA vdot block. That is,

HSPICE runs eight DC analyses, one for each line of parameter

values in the .DATA block.

The following is an example of .DATA as an outer sweep:

EXAMPLE:
. PARAM W = 50u W = 50u L
. TRAN 1n 100n SWEEP DATA =
. DATA d1
W W2 L CAP
50u 40u 1.0u 1. 2pf
25u 20u 0. 8u 0. 9pf
. ENDDATA

= 1u CAP =0
di

Simulation Input and Controls: Input Netlist File Composition

3-28

In the previous example:

* The default start time for the . TRAN analysis is 0.
e The time incrementis 1 ns.

 The stop time is 100 ns.

This results in transient analyses at every time value from 0 to 100
ns, in steps of 1 ns, using the first set of parameter values in

the .DATA d1 block. Then HSPICE reads the next set of parameter
values, and performs another 100 transient analyses. It sweeps time
from 0 to 100 ns, in 1 ns steps. The outer sweep is time, and the
inner sweep varies the parameter values. HSPICE performs two
hundred analyses: 100 time increments, times 2 sets of parameter
values.

External File .DATA Statement

SYNTAX:

The following is the syntax for concatenated data files:

. DATA dat anm MER

FILE = " fil enamel’” pnanel = col num
+ <pnane2 = col num...>

<FILE = "filenanme2’ pnanel = col num
+ <pnanme2 = col num...>>

<QUT = "fileout’>

. ENDDATA
Table 3-8 .DATA Syntax in External File
Parameter | Description
datanm Data name, referred to in the .TRAN, .DC or .AC statement.
MER Specifies concatenated (series merging) data files to use.
filenamei Data file to read. HSPICE concatenates files in the order they appear in

the .DATA statement. You can specify up to 10 files.

Simulation Input and Controls: Input Netlist File Composition

3-29

Table 3-8 .DATA Syntax in External File (Continued)

Parameter | Description

pnami Parameter names, used for source value, element value, device size, model
parameter value, and so on. Declare these names in a .PARAM statement.

colnum Specifies the column number in the data file, for the parameter value. The
column does not need to be the same between files.

fileouti Data file name, where simulation writes concatenated data. This file contains

the full syntax for an inline .DATA statement, and can replace the .DATA
statement that created it in the netlist. You can output the file, and use it to
generate one data file from many.

Concatenated data files are files with the same number of columns,
placed one after another. For example, if you concatenate the three
files (A, B, and C).

File AFile BFile C

aaab b bc cc
aaab b bc c c
aaa

The data appears as follows:

OO0OTTD 99 Q®
OO0OTTD 99 Q®
OTTTDL OO

C

Note: The number of lines (rows) of data in each file does not need
to be the same. The simulator assumes that the associated
parameter of each column of the A file is the same as each
column of the other files.

EXAMPLE:

. DATA i nput data MER
FILE = ‘filel pl

FILE = “file2 p1l 1
FILE = “file3
. ENDDATA

Simulation Input and Controls: Input Netlist File Composition

3-30

The above listing concatenates filel, file2, and file3, to form the
inputdata dataset. The data in filel is at the top of the file, followed
by the data in file2, and file3. The inputdata in the .DATA statement
references the dataname specified in either the .DC, .AC, or .TRAN
analysis statements. The parameter fields specify the column that
contains the parameters (you must already have defined the
parameter names in .PARAM statements). For example, the values
for the p1 parameter are in column 1 of filel and file2. The values for
the p2 parameter are in column 3 of filel.

For data files with fewer columns than others, HSPICE assigns
values of zero to the missing parameters.

Column Laminated .DATA Statement

SYNTAX:
. DATA dat anm LAM

FILE = "fil enamel’ pnanel = col num
+ <pannme2 = colnum...>

<FILE = "fil ename2’ pnanel = col num
+ <pnane2 = colnum...>>

<QUT = "fileout’>

. ENDDATA
Table 3-9 Column-Laminated .DATA Syntax

Parameter | Description

datanm Data name, referred to in the .TRAN, .DC or .AC statement.

LAM Column-laminated (parallel merging) data files to use.

filenamei Name of a data file to read. HSPICE concatenates files in the order listed in
the .DATA statement. Specify up to 10 files.

pnami Parameter names used for source value, element value, device size, model
parameter value, and so on. Declare these names in a .PARAM statement.

colnum Column number in the data file, that contains the parameter value. The column

does not need to be the same between files.

Simulation Input and Controls: Input Netlist File Composition
3-31

Table 3-9 Column-Laminated .DATA Syntax (Continued)

Parameter | Description

fileouti

Name of the data file, where HSPICE writes concatenated data. This file
contains the complete syntax for an inline .DATA statement, and can replace
the .DATA statement that created it. You can output the file, and generate one
data file from many.

Column lamination means that the columns of files with the same
number of rows, are arranged side-by-side.

EXAMPLE:

Three files (D, E, and F) contain the following columns of data:

File DFile EFile F

dl d2 d3e4 e5f6
dl d2 d3e4 e5f6
dl d2 d3e4 e5f6

The laminated data appears as follows:

dl d2 d3e4 e5f6
dl d2 d3e4 e5f6
dl d2 d3e4 e5f6

The number of columns of data does not need to be the same in the
three files.

Note: The number of lines (rows) of data in each file does not need
to be the same. HSPICE interprets missing data points as

Zero.
EXAMPLE:
. DATA dat anane LAM
FILE = *filel” pl =1 p2 =2 p3 =3
FILE = ‘file2" p4 =1 p5 =2
QUT = ‘fil eout’
. ENDDATA

Simulation Input and Controls: Input Netlist File Composition

3-32

This listing laminates columns from filel, and file2, into the fileout
output file. Columns one, two, and three of filel, and columns one
and two of file2, are designated as the columns to place in the output
file. You can specify up to 10 files per .DATA statement.

Note: If you run HSPICE on a different machine than the one on
which the input data files reside (such as when you work over
a network), use full path names instead of aliases. Aliases
might have different definitions on different machines.

INCLUDE Statement

SYNTAX:
. I NCLUDE * <filepath> fil enane’
Table 3-10 .INCLUDE Syntax

Parameter | Description

filepath Path name of a file, for computer operating systems that support tree-
structured directories.

A .INC file can contain nested .INC calls to itself, or to another .INC file. If
you use arelative path in a nested .INC call, the path starts from the directory
of the parent .INC file, not from the work directory. If the path starts from the
work directory, HSPICE can also find the .INC file, but prints a warning.

filename Name of a file to include in the data file. The file path, plus the file name, can
be up to 1024 characters long. You can use any valid file name for the
computer’s operating system. You must enclose the file path and name in
single or double quotation marks.

.MODEL Statement

SYNTAX:
. MODEL mane type <VERSI ON = versi on_nunber >
+ <pnanel = vall pnane2 =val2 ...>

Simulation Input and Controls: Input Netlist File Composition
3-33

Table 3-11

MODEL Syntax

mname Model name reference. Elements must use this name to refer to the model.
If model hames contain periods (.), the automatic model selector might fail.
type Selects a model type. Must be one of the following.
AMP operational amplifier model
C capacitor model
CORE magnetic core model
D diode model
L inductor model or magnetic core mutual inductor model
NJF n-channel JFET model
NMOS n-channel MOSFET model
NPN npn BJT model
OPT optimization model
PJF p-channel JFET model
PLOT plot model for the .GRAPH statement
PMOS p-channel MOSFET model
PNP pnp BJT model
R resistor model
U lossy transmission line model (lumped)
w lossy transmission line model
SP S parameter
pnamel ... Parameter name. Assign a model parameter name (pnamel) from the
parameter names for the appropriate model type. Each model section provides
default values. For legibility, enclose the parameter assignment list in
parentheses, and use either blanks or commas to separate each assignment.
Use a plus sign (+) to start a continuation line.
VERSION HSPICE version number. Allows portability of the BSIM (LEVEL=13) and BSIM2

(LEVEL = 39) models, between HSPICE releases. HSPICE release numbers,
and the corresponding version numbers, are:

HSPICE release Version number

9007B 9007.02
9007D 9007.04
92A 92.01
92B 92.02
93A 93.01
93A.02 93.02
95.3 95.3
96.1 96.1

Simulation Input and Controls: Input Netlist File Composition

3-34

Table 3-11

.MODEL Syntax (Continued)

The VERSION parameter is valid only for LEVEL 13 and LEVEL 39 models. Use
it with HSPICE Release H93A.02 and higher. If you use the parameter with any
other model, or with a release before H93A.02, HSPICE issues a warning, but
the simulation continues.You can also use VERSION to denote the BSIM3v3
version number only, in model LEVELSs 49 and 53. For LEVELs 49 and 53, the
HSPVER parameter denotes the HSPICE release number.

EXAMPLE:

. MODEL MOD1 NPN BF=50 | S=1E-13 VBF=50 AREA=2 PJ=3,
+ N=1. 05

.LIB Call and Definition Statements

To create and read from libraries of commonly-used commands,
device models, subcircuit analysis, and statements in library files,
use the .LIB call statement. As HSPICE encounters each .LIB call
name in the main data file, it reads the corresponding entry from the
designated library file, until it finds an .ENDL statement.

You can also place a .LIB call statement in an .ALTER block.

.LIB Library Call Statement

SYNTAX:
.LIB *<filepath> fil ename’ entrynane
Table 3-12 .LIB Syntax
Parameter | Description
filepath Path to a file. Used where a computer supports tree-structured directories. When

the LI Bfile (or alias) is in the same directory where you run HSPICE, you do not
need to specify a directory path; the netlist runs on any machine. Use the “../"
syntax in the filepath, to designate the parent directory of the current directory.

entryname

Entry name, for the section of the library file to include. The first character of an
entryname cannot be an integer.

Simulation Input and Controls: Input Netlist File Composition
3-35

Table 3-12 .LIB Syntax (Continued)

Parameter | Description

filename Name of a file to include in the data file. The combination of filepath plus filename
can be up to 256 characters long, structured as any filename that is valid for the
computer’s operating system. Enclose the file path and file name in single or
double quotation marks. Use the “../” syntax in the filename, to designate the
parent directory of the current directory.

EXAMPLE:
.LIB’*MODELS cnosl

.LIB Library File Definition Statement

To build libraries, use the .LIB statement in a library file. For each
macro in a library, use a library definition statement (.LIB entryname)
and an .ENDL statement. The .LIB statement begins the library
macro, and the .ENDL statement ends the library macro.

SYNTAX:

. LI B entrynanel

. $ ANY VALID SET OF HSPI CE STATEMENTS
. ENDL entrynanel

. LI B entrynane2

. $ ANY VALID SET OF HSPI CE STATEMENTS
. ENDL entrynanme?2
. LI B entrynane3

. $ ANY VALID SET OF HSPI CE STATEMENTS
. ENDL entrynane3

The text after a library file entry name must consist of HSPICE
statements.

Simulation Input and Controls: Input Netlist File Composition
3-36

.LIB Nested Library Calls

Library calls can call other libraries, if they are different files.

EXAMPLE:

Below are an illegal example and a legal example for the file3 library.

lllegal:

.LI B MOS7

LIB'file3 M7 $ This call is illegal in MXS7 library
. ENDL

Legal:

.LI B MOS7

' MOS8

1
2" MOS9
file2 is already open for the CIT entry point

.LIB fil
LB fil
.LIB CTT
. ENDL

e
e
$

You can nest library calls to any depth. Use nesting with the .ALTER
statement, to create a sequence of model runs. Each run can consist
of similar components, using different model parameters, without
duplicating the entire input file.

Library Building Rules
1. Alibrary cannot contain .ALTER statements.

A library can contain nested .LIB calls to itself or to other libraries.
If you use a relative path in a nested .LIB call, the path starts from
the directory of the parent library, not from the work directory. If
the path starts from the work directory, HSPICE can also find the
library, but it prints a warning. The depth of nested calls is limited
only by the constraints of your system configuration.

Simulation Input and Controls: Input Netlist File Composition
3-37

2. Alibrary cannot contain a call to a library of its own entry name,
within the same library file.

3. A HSPICE library cannot contain the .END statement.

4. .ALTER processing cannot change .LIB statements, within a file
that an .INCLUDE statement calls.

The simulator uses the .LIB statement and the .INCLUDE
statement, to access the models and skew parameters. The library
contains parameters that modify .MODEL statements. The example
below is a .LIB of model skew parameters, and features both worst-
case and statistical distribution data. The statistical distribution
median value is the default, for all non-Monte Carlo analysis.

EXAMPLE:

.LIBTT

$TYPI CAL P- CHANNEL AND N- CHANNEL CMOS LI BRARY

$ PROCESS: 1.0U CMOS, FABY

$ following distributions are 3 sigm ABSOLUTE GAUSSI AN
. PARAM TOX = AGAUSS(200, 20, 3)$ 200 angstrom +/ - 20a

+ XL = AGAUSS(0. 1u, 0.13u,3)$ polysilicon CD

+ DELVTON = AGAUSS(0.0,.2V,3)% n-ch threshol d change

+ DELVTOP = AGAUSS(0.0,.15V,3)%$ p-ch threshold change
.INC ‘/usr/nmetal/lib/cnposl nod.dat’$ nodel include file
.ENDL TT

.LIB FF
$H GH GAIN P-CH AND N-CH CMOS LI BRARY 3SI GVA VALUES
. PARAM TOX = 220 XL = -0.03 DELVION = -.2V

+ DELVTOP = -0. 15V
.INC ‘/usr/metal/lib/cnpsl nod.dat’$ nodel include file
. ENDL FF

The model is in the /usr/meta/lib/cmos1l_mod.dat include file.

.MODEL NCH NMOS LEVEL = 2 XL = XL TOX = TOX
+ DELVTO = DELVTON
.MODEL PCH PMOS LEVEL = 2 XL = XL TOX = TOX

+ DELVTO = DELVTOP

The model keyword (left side) equates to the skew parameter (right
side). A model keyword can be the same as a skew parameter.

Simulation Input and Controls: Input Netlist File Composition

3-38

.OPTION SEARCH Statement

Use this statement to automatically access a library.
SYNTAX:

. OPTI ON SEARCH = ‘directory_path’
EXAMPLE:

. OPTI ON SEARCH = ‘ $installdir/parts/vendor’

The preceding example searches for models in the vendor
subdirectory, under the $installdir/parts installation directory (see
Figure 3-2). The parts/ directory contains the DDL subdirectories.

Figure 3-2 Vendor Library Usage

x1 in out vdd vss buffer_f ————s .OPTION search = '$installdir/parts/vendor’

l $installdir/parts/vendor/buffer_f.inc
Sinstalldir/parts/vendor/skew.dat .macro buffer_fin out vdd vss
i Jib ‘$installdir/parts/vendor/skew.dat’ ff
Aib ff $ fast model .inc ‘$installdir/parts/vendor/buffer.inc’
.param vendor_x| = -.1u eom
.inc ‘$installdir/parts/vendor/model.dat’ '
.end| ff

$installdir/parts/vendor/buffer.inc

.macro buffer in out vdd vss

ml outinvddvdd nchw=101=1
.model nch nmos level = 28
+ xlI = vendor_xl ...

$installdir/parts/vendor/model.dat

Note: The ‘/usr’ directory is in the
HSPICE install directory.

Simulation Input and Controls: Input Netlist File Composition

3-39

Automatic Library Selection

Automatic library selection searches a sequence of up to 40
directories. The hspice.ini file sets the default search paths.

Use this file for directories that you want HSPICE to always search.
HSPICE searches for libraries in the order specified in
.OPTION SEARCH statements.

When HSPICE encounters a subcircuit call, the search order is:

1. Read the inputfile, for a .SUBCKT or .MACRO with the specified
call name.

2. Read any .INC files or .LIB files, for a .SUBCKT or .MACRO with
the specified call name.

3. Search the directory containing the input file, for the
call_name.inc file.

4. Search the directories in the .OPTION SEARCH list.

You can use the HSPICE library search and selection features to
simulate process corner cases, using .OPTION SEARCH = <libdir>’
to target different process directories. For example, if you store an
input/output buffer subcircuitin a file named iobuf.inc, you can create
three copies of the file, to simulate fast, slow and typical corner
cases. Each file contains different HSPICE transistor models,
representing the different process corners. Store these files (all
named iobuf.inc) in separate directories.

Simulation Input and Controls: Input Netlist File Composition

3-40

.PARAM Statement

The .PARAM statement defines parameters. Parameters in HSPICE
are names that have associated numeric values. You can use any of
the following methods to define parameters:

 Simple Parameter Assignments
» Algebraic Parameter (Equation)
« User-Defined Function

e Subcircuit Default Definition

* Predefined Analysis

« Measurement Parameters

Simple Parameter Assignments

A simple parameter assignment is a constant real number. The
parameter keeps this value, unless a later definition changes its
value, or an algebraic expression assigns a new value during
simulation. HSPICE does not warn you if it reassigns a parameter.

SYNTAX:
. PARAM <Par amNane>=<Real Nunber >

Algebraic Parameter (Equation)

To assign algebraic parameters, use an algebraic expression of real
values, a predefined or user-defined function, or circuit or model
values. Enclose a complex expression in single quotes to invoke the
algebraic processor, unless the expression begins with an
alphabetic character and contains no spaces. A simple expression
consists of a single parameter name.

SYNTAX:

. PARAM <Par anmNane>=" <Al gebr ai cExpr essi on>’
. PARAM <Par amNanel>=<Par anNane2>

Simulation Input and Controls: Input Netlist File Composition
341

To use an algebraic expression as an output variable in
a .PRINT, .PLOT, or .PROBE statement, use the PAR keyword.

EXAMPLE:

.PRINT DC v(3) gai n=PAR(‘Vv(3)/v(2)’)
+ PAR('V(4)/V(2)")

EXAMPLE:

. para x=cos(2)+sin(2)

User-Defined Function

A user-defined function assignment is similar to the definition of an
algebraic parameter. HSPICE extends the algebraic parameter
definition to include function parameters, used in the algebraic that
defines the function. You can nest user-defined functions up to three
deep.

SYNTAX:
. PARAM <Par amNane>(<pv1>[<pv2>]) =" <Expr essi on>’

Subcircuit Default Definition

When you use hierarchical subcircuits, you can pick default values
for circuit elements. You can use this feature in cell definitions, to
simulate the circuit with typical values.

SYNTAX:
. SUBCKT <SubName><Pi nLi st >[<SubDef aul t sLi st >]

The SubDefaultsList is:

<SubPar aml>=<Expr essi on>[<SubPar anl>=<Expr essi on>. . .|

Simulation Input and Controls: Input Netlist File Composition

3-42

Predefined Analysis

HSPICE provides several specialized analysis types, that require a
way to control the analysis. For the syntax of these uses of .PARAM,
see .PARAM Distribution Function on page 12-16.

HSPICE supports the following predefined analysis parameters:
« Temperature functions (fn)

* Optimization guess/range

« frequency

e time

 Monte Carlo functions

Measurement Parameters

.MEASURE statements produce a measurement parameter. In
general, the rules for measurement parameters are the same as
those for standard parameters. However, measurement parameters
are not defined in a .PARAM statement, but directly in

the .MEASURE statement. For more information, see .MEASURE
Parameter Types on page 7-42.

.PROTECT Statement
The .PROTECT statement keeps models and cell libraries private.

« The .PROTECT statement suppresses printing text from the list
file, such as when you use the BRIEF option.

« The .UNPROTECT command restores normal output functions.

* Any elements and models located between a .PROTECT and
an .UNPROTECT statement, inhibit the element and model
listing from the LIST option.

Simulation Input and Controls: Input Netlist File Composition
3-43

« The .OPTION NODE nodal cross reference, and the .OP
operating point printout, do not list any nodes that are contained
within the .PROTECT and .UNPROTECT statements.

SYNTAX:
. PROTECT

.UNPROTECT Statement

In HSPICE, the .UNPROTECT statement restores normal output
functions that a .PROTECT statement restricted.

* Any elements and models located between .PROTECT
and .UNPROTECT statements, inhibit the element and model
listing from the LIST option.

 Neither the .OPTION NODE cross reference, nor the .OP
operating point printout, list any nodes within the .PROTECT
and .UNPROTECT statements.

SYNTAX:
. UNPROTECT

ALTER Statement

You can use the .ALTER statement to rerun a HSPICE simulation,
using different parameters and data.

Use parameter (variable) values for print and plot statements, before
you alter them. The .ALTER block cannot include .PRINT, .PLOT,
.GRAPH or any other input/output statements. You can include
analysis statements (.DC, .AC, .TRAN, .FOUR, .DISTO, .PZ,and so
on) in a .ALTER block in an input netlist file.

Simulation Input and Controls: Input Netlist File Composition

3-44

However, if you change only the analysis type, and you do not
change the circuit itself, then simulation runs faster if you specify all
analysis types in one block, instead of using separate .ALTER blocks
for each analysis type.

The .ALTER sequence or block can contain:

* Element statements (except source elements)
 .DATA statements

 .DEL LIB statements

 .INCLUDE statements

* IC (initial condition) and .NODESET statements
« _LIB statements

« .MODEL statements

« .OP statements

« .OPTION statements

 .PARAM statements

« .TEMP statements

« .TF statements

« .TRAN, .DC, and .AC statements

« .ALIAS statements

Altering Design Variables and Subcircuits

The following rules apply when you alter design variables and
subcircuits in HSPICE.

Simulation Input and Controls: Input Netlist File Composition
3-45

If the name of a new element, .MODEL statement, or subcircuit
definition is identical to the name of an original statement of the
same type, then the new statement replaces the old. Add new
statements in the input netlist file.

. You can alter element and .MODEL statements within a

subcircuit definition. You can also add a new element or .MODEL
statement to a subcircuit definition. To modify the topology in
subcircuit definitions, put the element into libraries. To add a
library, use .LIB; to delete, use .DEL LIB.

If a parameter name in a new .PARAM statement in the .ALTER
module is identical to a previous parameter name, then the new
assigned value replaces the old value.

If you used parameter (variable) values for elements (or model
parameter values) when you used .ALTER, use the .PARAM
statement to change these parameter values. Do not use
numerical values to redescribe elements or model parameters.

If you used an .OPTION statement (in an original input file or
a .ALTER block) to turn on an option, you can turn that option off.

Each .ALTER simulation run prints only the actual altered input.

A special .ALTER title identifies the run.

ALTER processing cannot revise .LIB statements within a file
that an .INCLUDE statement calls. However, .ALTER processing
can accept .INCLUDE statements, within a file that a .LIB
statement calls.

Using Multiple .ALTER Statements
1. For the first simulation run, HSPICE reads the input file, up to the

first ALTER statement, and performs the analyses up to
that .ALTER statement.

Simulation Input and Controls: Input Netlist File Composition

3-46

After it completes the first simulation, HSPICE reads the input
between the first .ALTER statement, and either the next .ALTER
statement or the .END statement.

HSPICE then uses these statements to modify the input netlist
file.

HSPICE then resimulates the circuit.

For each additional .ALTER statement, HSPICE performs the
simulation that precedes the first .ALTER statement.

HSPICE then performs another simulation, using the input
between the current .ALTER statement, and either the
next .ALTER statement or the .END statement.

If you do not want to rerun the simulation that precedes the
first ALTER statement, every time you run a .ALTER simulation,
then do the following:

1.

Put the statements that precede the first .ALTER statement, into
a library.

Use the .LIB statement in the main input file.

Put a .DEL LIB statement in the .ALTER section, to delete that
library for the .ALTER simulation run.

SYNTAX:
.ALTER <title_string>

The title_string is any string up to 72 characters. HSPICE prints the
appropriate title string for each .ALTER run, in each section heading
of the output listing, and in the graph data (.tr#) files.

Simulation Input and Controls: Input Netlist File Composition
3-47

ALIAS Statement

As listed in the previous section, you can use .alter statements to
rename a model, to rename a library containing a model, or to delete
an entire library of models in HSPICE. If your netlist references the
old model name, then after you use one of these types of .alter
statements, HSPICE no longer finds this model.

For example, if you use .DEL LIB in the .ALTER block to delete a
library, the .ALTER command deletes all models in this library. If
your netlist references one or more models in the deleted library,
then HSPICE no longer finds the models.

To resolve this issue, HSPICE provides a .ALIAS command, to let
you alias the old model name to another model name that HSPICE
can find in the existing model libraries.

For example, you might delete a library named poweramp, that
contains a model named pal. Another library might contain an
equivalent model named parl. You can then alias the pal model
name to the parl model name:

.alias pal parl

During simulation, when HSPICE encounters a model named pal in
your netlist, it initially cannot find this model, because you used

a .ALTER statement to delete the library that contained this model.
However, the .ALIAS statement indicates to use the parl model, in
place of the old pal model. HSPICE does find this new model in
another library, so simulation continues.

You must specify an old model name and a new model name to use
in its place. You cannot use .ALIAS without any model names:

. ALI AS
or with only one model name:
. ALI AS pal

Simulation Input and Controls: Input Netlist File Composition

3-48

You also cannot alias a model name to more than one model name,
because then the simulator would not know which of these new
models to use in place of the deleted or renamed model:

. ALI AS pal parl par?2

For the same reason, you cannot alias a model name to a second
model name, and then alias the second model name to a third model
name:

. ALI AS pal parl
. ALI AS parl par?2

If your netlist does not contain a .ALTER command, and if
the .ALIAS does not report a usage error, then the .ALIAS does not
affect the simulation results.

EXAMPLE:
Your netlist might contain the statement:

. ALI AS nyfet nfet

Without a .ALTER statement, HSPICE does not use nfet to replace
myfet during simulation.

If your netlist contains one or more .ALTER commands, the first
simulation uses the original myfet model. After the first simulation, if
the netlist references myfet from a deleted library, .ALIAS substitutes
nfet in place of the missing model.

« If HSPICE finds model definitions for both myfet and nfet, it
reports an error and aborts.

« If HSPICE finds a model definition for myfet, but not for nfet, it
reports a warning, and simulation continues, using the original
myfet model.

« If HSPICE finds a model definition for nfet, but not for myfet, it
reports a replacement successful message.

Simulation Input and Controls: Input Netlist File Composition
3-49

.MALIAS Statement

You can use the .MALIAS statement to assign an alias (another
name) to a diode, BJT, JFET, or MOSFET model that you defined in
a .MODEL statement.

The syntax of the .MALIAS statement is:

. MALI AS nodel nane=alias _nanel <alias _nane2 ...>

 model_name is the model name defined in the .model card.

« alias_namel... is the alias that an instance (element) of the
model references.

EXAMPLE:

*file: test malias statenent

. OPTION acct tnome50 |ist gm n=1le-14 post
.temp 0.0 25

.tran .1 2

vdd 2 0O pw 0 -1 11

dl 2 1 zend dtenp=25

d2 1 0 zen dtenp=25

* malias statenents

.mal i as zendef = zen zend

* nodel definition

. nmodel zendef d (vj=.8 is=le-16 ibv=1le-9 bv=6.0 rs=10
+ tt=0.11n n=1.0 eg=1. 11 m=. 5 cjo=1pf tref=50)
.end

» zendefis a diode model

* zen and zend are its aliases.

» The zendef model points to both the zen and zend aliases.
.malias differs from .alias in two ways:

« The alias in an .alias statement is defined in a .model card, but
the model card does not define the alias in a .malias statement.

» The .alias command works only if you include .alter in the netlist.
You can use .malias without .alter.

Simulation Input and Controls: Input Netlist File Composition

3-50

.CONNECT Statement

This statement connects two nodes in your HSPICE netlist, so that
simulation evaluates two nodes as only one node. Both nodes must
be at the same level in the circuit design that you are simulating: you
cannot connect nodes that belong to different subcircuits.

SYNTAX:
. connect nodel node2

Table 3-13 .CONNECT Syntax

Parameter | Description

nodel Name of the first of two nodes to connect to each other.

node?2 Name of the second of two nodes to connect to each other. The
first node replaces this node in the simulation.

If you connect node2 to nodel, HSPICE does not recognize node2
at all. To apply any HSPICE statement to node2, apply it to nodel
instead. Then, to change the netlist construction to recognize node2,
use a .alter statement.

EXAMPLE:

*exanpl e for .connect
vcc 0 cc bv

rl 01 5k

r2 1 cc 5k

.tran 1n 10n

.print i(vcc) v(1)
.alter

.connect cc 1

. end

The first .tran simulation includes two resistors. Later simulations
have only one resistor, because r2 is shorted by connecting cc with
1. v(1) does not print out, but v(cc) prints out instead.

Use multiple .connect statements to connect several nodes together.

Simulation Input and Controls: Input Netlist File Composition
3-51

EXAMPLE:

. connect nodel node2

. connect node2 node3

connects both node2 and node3 to nodel. All connected nodes must
be in the same subcircuit, or all in the main circuit. The first HSPICE
simulation evaluates only nodel; node2, and node3 are the same
node as nodel. Use .alter statements to simulate node2 and node3.

If you set .option node, HSPICE prints out a node connection table.

.DEL LIB Statement

Use the .DEL LIB statement to remove library data from memory.
The next time you run a simulation, the .DEL LIB statement removes
the .LIB call statement, with the same library number and entry
name, from memory. You can then use a .LIB statement to replace

the deleted library.
You can use the .DEL LIB statement with the .ALTER statement.

SYNTAX:

.DEL LIB ‘<filepath>filenane’ entrynane
.DEL LIB |ibnunber entrynane

Table 3-14 .DEL LIB Syntax

Parameter | Description

entryname Entry name, used in the library call statement to delete.

filename Name of a file to delete from the data file. The file path, plus the file name, can
be up to 64 characters long. You can use any file name that is valid for the
operating system that you use. Enclose the file path and file name in single or
double quote marks.

filepath Path name of a file, if the operating system supports tree-structured directories.

libnumber Library number, used in the library call statement to delete.

Simulation Input and Controls: Input Netlist File Composition

3-52

EXAMPLE 1:

This example uses an .ALTER block.

FI LE1l: ALTER1 TEST CMOS | NVERTER

. OPTI ON ACCT LI ST
. TEMP 125
. PARAM W/AL = 15U VDD = 5

. OP
.DCVINO 5 0.1
.PLOT DC V(3) V(2)

*

VDD 1 0 VDD

VIN 2 0

*

M. 3 211PG6UI15U

M 3200 NGUW= WAL

.LIB’MOS. LI B NORVAL
. ALTER
.DEL LIB "MOS. LI B NORMAL

$PROTECTI ON
. PROT
.LIB "MOS. LIB FAST

. UNPROT
. ALTER
. OPTI ON NOMOD OPTS

.TEMP -50 0 50

. PARAM WAL = 100U VDD = 5.5
VDD 1 0 5.5

VIN 2 0 PAL ONS O 2NS 5 4NS 0
. OP VOL

. TRAN 1NS 5NS

M2 3200 NBU WAL

.MEAS SW2 TRIG V(3) VAL = 2.5
+ VAL = VDD CROSS = 2

*

. END

$renmoves LIB from nmenory

$protect statements bel ow . PROT
$get fast nodel library

$suppress printing nodel paraneters
and print the option sunmary
$run with different tenperatures
$change the paraneters

$using VDD 1 0 5.5 to change the
$power supply VDD val ue doesn’t
$wor k

5NS 5

$change the input source

$node vol tage table of operating
$poi nt s

$run with transient also

$change channel width

RISE = 1 TARG V(3)

$nmeasur e out put

Example 1 calculates a DC transfer function for a CMOS inverter.

1. First, HSPICE simulates the device, using the NORMAL inverter
model from the MOS.LIB library.

Simulation Input and Controls: Input Netlist File Composition

3-53

2. Using the .ALTER block and the .LIB command, HSPICE
substitutes a faster CMOS inverter, FAST, for NORMAL.

HSPICE then resimulates the circuit.

4. Using the second .ALTER block, HSPICE executes DC transfer
analysis simulations at three different temperatures, and with an
n-channel width of 100 mm, instead of 15 mm.

5. HSPICE also runs a transient analysis, in the second .ALTER
block. Use the .MEASURE statement to measure the rise time of

the inverter.

EXAMPLE 2:

This example uses an .ALTER block.

FI LE2: ALTER2. SP CMOS | NVERTER USI NG SUBCI RCUI T

. OPTI ON LI ST ACCT

_.MACRO INV 1 2 3
ML 3211FP6U1I15U
M2 3200 NG6USU
.LIB ' MOS.LI B NORMAL
. EOM | NV

XINV 123 IN
VDD 1 0 5

VIN2 0
.DCVINO 5 0. 1
.PLOT V(3) V(2)

. ALTER

.DEL LIB ' MOS.LI B NORMAL
.TF V(3) VIN
*

$DC smal | -signal transfer function

$change data within subcircuit def
$change channel | ength,w dth, al so
$t opol ogy

$change t opol ogy

$add the new el enent

$add t he new el enent

$set slow nodel library

$not allowed to be used inside
$subcircuit all owed outside
$subcircuit

In this example, the .ALTER block adds a resistor and capacitor
network to the circuit. The network connects to the output of the
inverter, and HSPICE simulates a DC small-signal transfer function.

Simulation Input and Controls: Input Netlist File Composition

3-54

.END Statement

An .END statement must be the last statement in the input netlist file.
The period preceding END is a required part of the statement.

Any text that follows the .END statement is a comment, and has no
effect on that simulation.

An input file that contains more than one simulation run must include
an .END statement for each simulation run. You can concatenate
several simulations into a single file.

SYNTAX:

. END <coment >

EXAMPLE:

MOS OUTPUT

. OPTI ON NODE NOPAGE

VDS 3 0

VGS 2 0

ML 1200MDLL =4UW=6UAD = 10P AS
. MODEL MODL NMOS VTO = -2 NSUB = 1. 0E15 TOX
VIDS 3 1

.DC VDS 0 10 0.5 VGSO0 5 1

.PRINT DC | (ML) V(2)

. END MOS OQUTPUT

10P
1000 UO = 550

MOS CAPS

. OPTI ON SCALE = 1U SCALM = 1U W ACCT
. OP

.TRAN .1 6

Vi10PWO-1.5V 6 4.5V

V2 2 0 1.5VOLTS

MODNL 2 1 0 0 M10 3

.MODEL M NMOS VTO = 1 NSUB = 1E15 TOX = 1000 UO = 800
LEVEL = 1
+ CAPOP = 2

.PLOT TRAN V(1) (0,5) LX18(ML) LX19(ML) LX20(M) (O, 6E-13)
.END MOS CAPS

Simulation Input and Controls: Input Netlist File Composition

3-55

Condition-Controlled Netlists (IF-ELSE)

.if (conditionl)
<stat enent bl ockl>

The follow ng statenent block in {braces} is
optional, and you can repeat it nultiple tines:
{ .elseif (condition2)

<st at enent _bl ock2>

}

The follow ng statenment block in [brackets]
is optional, and you cannot repeat it:
[.else (condition3)

<stat enent bl ock3>

I

.endif

You can use this IF-ELSE structure to change the circuit topology,
expand the circuit, set parameter values for each device instance, or
select different model cards in each IF-ELSE block.

* InanIF, ELSEIF, or ELSE condition statement, complex Boolean
expressions must not be ambiguous. For example, change
(a==b && c>=d) to ((a==b) && (c>=d)).

* InanlF, ELSEIF, or ELSE statement_block, you can include most
valid HSPICE analysis and output statements. The exceptions
are:

.end, .alter, .subckt, .ends, .macro, .eom, .global, .del, .mailias, .
alias, .list, .nolist, and .connect statements.

search, d_ibis, d_imic, d_Iv56, biasfi, modsrh, cmiflag, nxx, and
brief options.

 You can include IF-ELSEIF-ELSE statements in subcircuits, but
you cannot include subcircuits in IF-ELSEIF-ELSE statements.

* However, you can use IF-ELSEIF-ELSE blocks to select different
submodules, to structure the netlist (using .inc, .lib, and .vec
statements).

Simulation Input and Controls: Input Netlist File Composition
3-56

» If two or more models in an IF-ELSE block have the same model
name and model type, they must also be the same revision level.

« Parameters in an IF-ELSE block do not affect the parameter
value within the condition expression. HSPICE updates the
parameter value only after it selects the IF-ELSE block.

* You can nest IF-ELSE blocks.

* You can include an unlimited number of ELSEIF statements
within an IF-ELSE block.

* You cannot include sweep parameters or simulation results
within an IF-ELSE block.

* You cannot use an IF-ELSE block within another statement. In
the following example, HSPICE does not recognize the IF-ELSE
block as part of the resistor definition:

r 10
i f (r_val >10k)
+ 10k
. el se
+ r_val
.endi f

Using Subcircuits

Reusable cells are the key to saving labor in any CAD system. This
also applies to circuit simulation, in HSPICE.

 To create and simulate a reusable circuit, construct it as a
subcircuit.

» Use parameters to expand the utility of a subcircuit.

Traditional SPICE includes the basic subcircuit, but does not provide
a way to consistently name nodes. However, HSPICE provides a
simple method for naming subcircuit nodes and elements: use the
subcircuit call name as a prefix to the node or element name.

Simulation Input and Controls: Using Subcircuits
3-57

Figure 3-3 Subcircuit Representation

N
i v T
.ﬂ o -

— INV

The following input creates an instance named X1 of the INV cell
macro, which consists of two MOSFETs, named MN and MP:

X1 IN QUT VD _LOCAL VS _LOCAL inv W= 20
.MACRO INV IN QUT VDD VSS W= 10 L =1 DJUNC = O
MP OQUT IN VDD VDD PCH W= WL = L DTEMP = DJUNC

MN QUT IN VSS VSS NCH W= "W2' L = L DITEMP = DIJUNC
. EOM

Note: To access the name of the MOSFET, inside of the INV

subcircuit that X1 calls, the names are X1.MP and X1.MN. So

to print the current that flows through the MOSFETS,
use .PRINT | (X1.MP)

Hierarchical Parameters

M (Multiply) Parameter

The most basic HSPICE subcircuit parameter is the M (multiply)
parameter. This keyword is common to all elements, including
subcircuits, except for voltage sources. The M parameter multiplies

the internal component values, which in effect creates parallel copies

of the element or subcircuit. To simulate 32 output buffers switching
simultaneously, you need to place only one subcircuit:

X1 in out buffer M= 32

Simulation Input and Controls: Using Subcircuits

3-58

Multiply works hierarchically. For a subcircuit within a subcircuit,
HSPICE multiplies the product of both levels. Do not assign a
negative value or zero as the M value.

Figure 3-4 Hierarchical Parameters Simplify Flip-flop Initialization

XlinoutinyM=2

¢ M=38

mp outinvdd pchW=10L=1M=4
M=6
mnoutinvssnchwW=5L=1M=3

) UNEXPANDED EXPANDED

EXAMPLE:

X1 D Q Qar CL CLBAR dlatch flip =0
macro dl atch

+ DQ Qoar CL CLBAR flip = vcc

. hodeset v(din) =flip

xinvl din gbar inv

xinv2 Qbhar Qinv

m q CLBAR din nchw=51 =1
nm2 DCL dinnchw=51] =1
. eom

S (Scale) Parameter

To scale a sub-circuit, use the S (local scale) parameter. This
parameter behaves in much the same way as the M parameter in the
preceding section.

Simulation Input and Controls: Using Subcircuits
3-59

SYNTAX:

. OPTI ON hi er _scal e=val ue
. OPTI ON scal e=val ue
X1 nodel node2 subname S = val ueM par anet er

The option hier_scale statement defines how HSPICE interprets the
S parameter, where value is either:

* O (the default), indicating a user-defined parameter, or
* 1, indicating a scale parameter.

The .OPTION SCALE statement defines the original (default) scale
of the sub-circuit. The specified S scale is relative to this default
scale of the sub-circuit.

The scale in the subname sub-circuit is value*scale. Subcircuits can
originate from multiple sources, so scaling is multiplicative
(cumulative) throughout your design hierarchy.

EXAMPLE:
x1 ay inv S=1lu
subckt inv in out

x2 a b kk S=1m
. ends

In this example:

1. HSPICE scales the X1 sub-circuit by the first S scaling value,
1u*(SCALE).

2. Because scaling is cumulative, X2 (a sub-circuit of X1) is then
scaled, in effect, by the S scaling values of both X1 and X2:

1t 1u* (SCALE)

Simulation Input and Controls: Using Subcircuits

3-60

Figure 3-5 D Latch with Nodeset

K

Q

.Nodeset

HSPICE does not limit the size or complexity of subcircuits; they can
contain subcircuit references, and any model or element statement.
To specify subcircuit nodes in .PRINT or .PLOT statements, specify
the full subcircuit path and node name.

Undefined Subcircuit Search

If a subcircuit call is in a data file that does not describe the
subcircuit, HSPICE automatically searches the:

1. Present directory for the file.

2. Directories specified in any .OPTION SEARCH =
“directory_path_name” statement.

3. Directory where the Discrete Device Library is located.

HSPICE searches for the model reference name file that has an .inc
suffix. For example, if the data file includes an undefined subcircuit,
suchas X 11 2 INV, HSPICE searches the system directories for the
inv.inc file and, when found, places that file in the calling data file.

Simulation Input and Controls: Using Subcircuits
3-61

Discrete Device Libraries

The Synopsys Discrete Device Library (DDL) is a collection of True-
Hspice device models of discrete components, which you can use
with HSPICE. The $installdir/parts directory contains the various
subdirectories that form the DDL. Synopsys used its own ATEM
discrete device characterization system to derive the BJT, MESFET,
JFET, MOSFET, and diode models from laboratory measurements.
The behavior of op-amp, timer, comparator, SCR, and converter
models closely resembles that described in manufacturers’ data
sheets. HSPICE has a built-in op-amp model generator.

Note: The value of the $installdir environment variable is the path
name to the directory where you installed HSPICE. This
installation directory contains subdirectories, such as /parts
and /bin. It also contains certain files, such as a prototype
meta.cfqg file, and the HSPICE license files.

DDL Library Access

To include a DDL library component in a data file, use the X
subcircuit call statement with the DDL element call. The DDL
element statement includes the model name, which the actual DDL
library file uses.

EXAMPLE:

The following element statement creates an instance of the 1N4004
diode model:

X1 2 1 D1INAOO4

D1N4004 is the model name. See Element and Source Statements
on page 3-11 and the HSPICE Elements and Device Models Manual
for descriptions of element statements.

Simulation Input and Controls: Discrete Device Libraries

3-62

Optional parameter fields in the element statement can override the
internal specification of the model. For example, for op-amp devices,
you can override the offset voltage, and the gain and offset current.
Because the DDL library devices are based on True-Hspice circuit-
level models, simulation automatically compensates for the effects of
supply voltage, loading, and temperature.

HSPICE accesses DDL models in several ways:
1. The installation script creates an hspice.ini initialization file.

2. HSPICE writes the search path for the DDL and vendor libraries
into a .OPTION SEARCH = ‘<lib_path>’ statement.

This provides immediate access to all libraries for all users. It also
automatically includes the models in the input netlist. If the input
netlist references a model or subcircuit, HSPICE searches the
directory to which the = DDLPATH environment variable points,
for a file with the same name as the reference name. This file is
an include file, so its filename suffix is .inc. HSPICE installation
sets the DDLPATH variable in the meta.cfg configuration file.

3. Set .OPTION SEARCH = <library_path>" in the input netlist.

Use this method to list the personal libraries to search. HSPICE
first searches the default libraries referenced in the hspice.inifile,
then searches libraries in the order listed in the input file.

4. Directly include a specific model, using the .INCLUDE statement.
For example, to use a model named T2N2211, store the model in
a file named T2N2211.inc, and put the following statement in the
input file:

. I NCLUDE <pat h>/ T2N2211.i nc

This method requires you to store each model in its own .inc file,
so it is not generally useful. However, you can use it to debug
new models, when you test only a small number of models.

Simulation Input and Controls: Discrete Device Libraries
3-63

Vendor Libraries

The vendor library is the interface between commercial parts, and
circuit or system simulation, in HSPICE.

» ASIC vendors provide comprehensive cells, corresponding to
inverters, gates, latches, and output buffers.

 Memory and microprocessor vendors supply input and output
buffers.

» Interface vendors supply complete cells, for simple functions and
output buffers, to use in generic family output.

* Analog vendors supply behavioral models.

To avoid name and parameter conflicts, models in vendor cell
libraries should be within the subcircuit definitions.

Figure 3-6 Vendor Library Usage

x1 in out vdd vss buffer f ————» .OPTION search = ‘/usr/lib/vendor’

'

l lusr/lib/vendor/buffer_f.inc

lusr/lib/vendor/skew.dat .macro buffer_f in out vdd vss
) — .lib ‘/usr/lib/vendor/skew.dat’ ff
lib ff $ fast model

param vendor x| = -.1u .inc ‘/usr/lib/vendor/buffer.inc’

.inc ‘/usr/lib/vendor/model.dat’ -eom
.endl ff

/usr/lib/vendor/buffer.inc

{usr/lib/vendor/model.dat .macro buffer in out vdd vss

.model nch nmos level = 28 ml outinvddvdd nchw =101=1

+ x| = vendor_xl ...

Simulation Input and Controls: Discrete Device Libraries

Subcircuit Library Structure

Your library structure must adhere to the .INCLUDE statement
specification in the implicit subcircuit. You can use this function to
specify the directory that contains the <subname>.inc subcircuit file,
and then reference the <subname> in each subcircuit call.

The HSPICE component naming conventions for each subcirculit is:

<subnane>. i nc

Store the subcircuit in a directory that is accessible through the
.OPTION SEARCH = ‘<libdir>" statement.

Create subcircuit libraries in a hierarchy. Typically, the top-level
subcircuit fully describes the input/output buffer; any hierarchy is
buried inside. The buried hierarchy can include model statements,
lower-level components, and parameter assignments. Your library
cannot use .LIB or .INCLUDE statements anywhere in the hierarchy.

Using Standard Input Files

This section describes how to use standard input files in HSPICE.

Design and File Naming Conventions

The design name identifies the circuit and any related files, including:

« Schematic and netlist files.
« Simulator input and output files.
» Design configuration files.

« Hardcopy files.

Simulation Input and Controls: Using Standard Input Files
3-65

HSPICE and AvanWaves extract the design name from their input
files, and perform actions based on that name. For example,
AvanWaves reads the <design>.cfg configuration file, to restore
node setups used in previous AvanWaves runs.

HSPICE and AvanWaves read and write files related to the current
circuit design. Files related to a design usually reside in one
directory. The output file is standard output on Unix platforms, and
you can redirect it.

Table 3-15 on page 3-66 lists input file types, and their standard
names. The following sections describe these files.

Table 3-15 Input Files

Input File Type File Name
Output configuration file meta.cfg
Initialization file hspice.ini

DC operating point initial conditions file <design>.ic#
Input netlist file <design>.sp
Library input file <library_name>
Analog transition data file <design>.d2a

Configuration File (meta.cfqg)

This file sets up the printer, plotter, and terminal. It includes a line,
default_include = file name, which sets up a path to the default .ini
file (for example, hspice.ini).

The default_include file name is case-sensitive (except for the PC
and Windows versions of HSPICE).

Simulation Input and Controls: Using Standard Input Files

3-66

Initialization File (hspice.ini)

Specify user defaults in an hspice.ini initialization file. If the run
directory contains an hspice.ini file, HSPICE includes its contents at
the top of the input file.

To include initialization files, you can define DEFAULT_INCLUDE =
<filename> in the system, or in a meta.cfg file.

You can use an initialization file to set options (in an .OPTION
statement) and to access libraries, as the Synopsys installation
procedure does.

DC Operating Point Initial Conditions File
(<design>.ic#)

The <design>.ic# file is an optional input file, which contains initial
DC conditions for particular nodes. You can use this file to initialize
DC conditions, with either a .NODESET or an .IC statement.

The .SAVE statement creates a <design>.ic# file. A
subsequent .LOAD statement initializes the circuit to the DC
operating point values, specified in the <design>.ic# file.

Starting HSPICE

Use the following syntax to start HSPICE:

hspice <-i> <path/>input_file <-o path/output_file>
+ <-n nunber> <-htm <path/ html_file>> <- b>

Simulation Input and Controls: Starting HSPICE
3-67

Table 3-16

HSPICE Startup Syntax

Parameter

Description

input_file

Specifies the input netlist file name, for which an extension <. ext > is optional.
If you do not specify an input filename extension in the command, HSPICE
searches for the <i nput _fi | e>. sp file. Precede the input file with -i. HSPICE
uses the input filename as the root for the output files. Star- Hspice also checks
for an initial conditions file (. i ¢) that has the input file root name. The following
is an example of an input file name:

/usr/simwork/rb_design.sp
In this file name:

e Jusr/sim/work/ is the directory path to the design.
e rb_design is the design root name.
e .spis the filename suffix.

Specifies the starting number for numbering output data file revisions
(output_file.tr#, output_file.ac#, output_file.sw#, where #is the revision number).

Table 3-17 lists available HSPICE command arguments..

Table 3-17 HSPICE Command Options
Option Description
-b Batch processing switch, for PC platforms only.
-html Specifies an HTML output file. If you do not specify a path, HSPICE saves

<path/>html_file | the HTML output file in the same directory that you specified in the - 0

option. If you do not specify the - o option, HSPICE saves the HTML
output in the running directory.

-i <input_file> Name of the input netlist file. If you do not enter an extension, HSPICE
assumes .sp.
-n <number> Revision number at which to start numbering .gr#, .tr#, and other output

files. By default, file numbers start at zero: .gr0, .tr0, and so on. Use this
option to specify the number (-n 7 for .gr7, .tr7, for example).

-0 <output_file> Name of the output file. If you do not specify an extension, HSPICE

assigns .lis.

Simulation Input and Controls: Starting HSPICE

3-68

You do not need to include a filename extension in the output file
specification. HSPICE names it output_file.lis. In output file names,
everything up to the final period is the root filename, and everything
after the last period is the filename extension.

If you either do not use the -0 option, or you use the -0 option
without pointing to a filename, then HSPICE uses the output root
file name specified in the -html option.

If you do not specify an output file name in either the -0 or -html
option, then HSPICE uses the input root flename as the output
file root filename.

If you include the .lis extension in the filename that you enter
using -o, then HSPICE does not append another .lis extension to
the root filename of the output file.

If you do not specify an output file, HSPICE directs output to the
terminal.

Use the following syntax to redirect the output to a file, instead of to
the terminal:

hspice input file <-n nunber> > output file

EXAMPLE:

hspi ce deno.sp -n 7 > deno. out

Table 3-18 HSPICE Syntax for Output Files

Parameter | Description
demo.sp Input netlist file; the .sp extension to the filename is optional.
-n7 Starts the output data file revision numbers at 7: demo.tr7, demo.ac7, and

demo.sw7

Redirects the program output listing to demo.out

Simulation Input and Controls: Starting HSPICE
3-69

Executing a Simulation

Perform these steps to execute a HSPICE simulation.

1.

Invocation.

To invoke HSPICE, use a Unix command such as:
hspi ce denp.sp > deno. out &

This command invokes the HSPICE shell, and uses an input
netlist file named demo.sp, and an output listing file named
demo.out. The & at the end of the command invokes HSPICE in
the background, so that you can still use the window and
keyboard while HSPICE runs.

Script execution.

The HSPICE shell starts the hspice executable, from the
appropriate architecture (machine type) directory. The Unix run
script launches a HSPICE simulation. This procedure
establishes the environment for the HSPICE executable. The
script prompts for information, such as the platform that you are
using, and the version of HSPICE to run. (Available versions are
determined when you install HSPICE.)

Licensing.

HSPICE supports the FLEXIm licensing management system.
When you use FLEXIm licensing, HSPICE reads the
LM_LICENSE_FILE environment variable to find the location of
the license.dat file.

If HSPICE cannot authorize access, the job terminates at this
point, and prints an error message in the output listing file.

Simulation configuration.

HSPICE reads the appropriate meta.cfg file. The search order for
the configuration file is the user login directory, and then the
product installation directory.

Simulation Input and Controls: Starting HSPICE

3-70

5. Design input.

HSPICE opens the input netlistfile. If the input netlist file does not
exist, a no input data error appears in the output listing file.

HSPICE opens three scratch files in the /tmp directory. To change
this directory, reset the TMPDIR environment variable in the
HSPICE command script.

HSPICE opens the output listing file. If you do not own the current
directory, HSPICE terminates with a file open error.

An example of a simple HSPICE input netlist is:

Inverter Crcuit

. OPTI ON LI ST NODE POST
. TRAN 200P 20N SWEEP TEMP -55 75 10

.PRINT TRAN V(IN) V(OUT)

ML VCC IN OUT VCC PCH L = 1U W= 20U

M2 OUT INO O NCHL = 1U W= 20U

VCC VCC 0 5

VININO O PULSE .2 4.8 2N 1IN 1IN 5N 20N CLOAD OUT O . 75P
. MODEL PCH PMOS

. MODEL NCH NMOS

. ALTER

CLOAD OUT 0 1.5P

. END

6. Library input.

HSPICE reads any files specified in .INCLUDE and .LIB
statements.

7. Operating point initialization.

HSPICE reads any initial conditions that you specified in .IC and
.NODESET statements, finds an operating point (that you can
save with a .SAVE statement), and writes any operating point
information that you requested.

Simulation Input and Controls: Starting HSPICE
3-71

8. Multipoint analysis.

HSPICE performs the experiments specified in analysis
statements. In the above example, the . TRAN statement causes
HSPICE to perform a multipoint transient analysis for 20 ns, for
temperatures ranging from -55°C to 75°C, in steps of 10°C.

9. Single-point analysis.
HSPICE performs a single or double sweep of the designated
quantity, and produces one set of output files.

10. Worst-case .ALTER.

You can vary simulation conditions, and repeat the specified
single or multipoint analysis. The above example changes
CLOAD from 0.75 pF to 1.5 pF, and repeats the multipoint
transient analysis.

11. Normal termination.

After you complete the simulation, HSPICE closes all files that it
opened, and releases all license tokens.

Interactive Simulation

To invoke HSPICE in interactive mode, enter:
hspice -1

You can then use other HSPICE commands to help you simulate
circuits interactively. You can also use the hel p command for detailed
information about a command.

HSPICE interactive mode also supports saving commands into a
script file. To save the commands that you use, and replay them
later, enter:

hspice -1 -L scriptifile.cnd

Simulation Input and Controls: Starting HSPICE

3-72

Sample HSPICE Commands

The following are some additional examples of HSPICE commands.

hspice -i demo.sp

demo is the root filename. Output files are named demo.lis,
demo.tr0, demo.st0, and demo.ic.

hspice -i demo.sp -0 demo

demo is the output file root name (designated with the -0 option).
Output files are named demo.lis, demo.trO, demo.st0, and
demao.ic.

hspice -i rbdir/demo.sp

demo is the root name. HSPICE writes the demo.lis, demo.trO0,
and demo.st0 output files into the directory where you executed
the HSPICE command. It also writes the demo.ic output file into
the same directory as the input source—that is, rbdir.

hspice -i a.b.sp

a.b is the root name. The output files are ./a.b.lis, ./a.b.tr0,
Ja.b.st0, and ./a.b.ic.

hspice -ia.b -0 d.e
a.b is the root name for the input file.

d.e is the root for output file names, except for the .ic file, to which
HSPICE assigns the a.b input file root name. The output files are
d.e.lis, d.e.trO, d.e.st0O, and a.b.ic.

hspice -i a.b.sp -0 outdir/d.e

a.b is the root for the .ic file. HSPICE writes the .ic file into a file
named a.b.ic.

d.e is the root for other output files. Output files are outdir/d.e.lis,
outdir/d.e.trO, and outdir/d.e.st0.

Simulation Input and Controls: Starting HSPICE
3-73

hspice -i indir/a.b.sp -0 outdir/d.e.lis

a.b is the root for the .ic file. HSPICE writes the .ic file into a file
named indir/a.b.ic.

d.e is the root for the output files.
* hspice test.sp -0 test.lis -html test.html

This command creates output file in both .lis and .html format,
after simulating the test.sp input netlist.

* hspice test.sp -html test.html

This command creates only a .html output file, after simulating
the test.sp input netlist.

» hspice test.sp -0 test.lis

This command creates only a .lis output file, after simulating the
test.sp input netlist.

* hspice -i test.sp -0 -html outdir/a.html

This command creates output files in both .lis and .html format.
Both files are in the outdir directory, and their root filename is a.

» hspice -i test.sp -0 outl/a.lis -html out2/b.html

This command creates output files in both .lis and .html format.
The .lis file is in the outl directory, and its root filename is a.
The .html file is in the out2 directory, and its root filename is b.

Improving Simulation Performance with Multithreading

HSPICE simulations include device model evaluations and matrix
solutions. You can run model evaluations concurrently on multiple
CPUs, using multithreading, to significantly improve simulation
performance. Model evaluation dominates most of the time. To
determine how much time HSPICE spends evaluating models and
solving matrices, specify .OPTION acct = 2 in the netlist. Using
multithreading speeds-up simulations, with no loss of accuracy.

Simulation Input and Controls: Improving Simulation Performance with Multithreading
3-74

Multithreaded (MT) HSPICE is supported on Sun Solaris 2.5.1
(SunOS 5.5.1), Sun Solaris 2.7 (SunOS 5.7), Sun Solaris 2.8
(SunOS 5.8), HP-UX 11.0, PC/RedHat Linux 7.0, PC/RedHat Linux
7.1, Windows NT, Windows 2000, and Windows XP.

Multithreading improves simulation speed, especially for circuit
designs that contain many MOSFET, JFET, diode, or BJT models in
the netlist.

Running HSPICE-MT
To run HSPICE-MT, use the following syntax:

hspice nt -m #num -i input filenanme -o output filenane

* Ifyou omit the #num, or if the #num that you specify is larger than
the number of online CPUs, then HSPICE sets the number of
threads to the number of online CPUs.

« If you omit the -0 output_file option, HSPICE prints the result to
the standard output.

Under Windows NT Explorer:

1. Double click the hsp_mt application icon.

2. Select the File/Simulate button, to select the input netlist file.

In Windows, the program automatically detects the number of online
CPUs. Under the Synopsys HSPUI (HSPICE User Interface):

Select the correct hsp_mt.exe version in the Version Combo Box.
Select the correct number of processors in the MT Option Box.

Click the Open button, to select the input netlist file.

A

Click the Simulate button, to start the simulation.

Simulation Input and Controls: Improving Simulation Performance with Multithreading
3-75

Performance Improvement Estimations
For multithreaded HSPICE, the CPU time is:

Tnt = Tserial + Tparallel/Ncpu + Tover head

For example, for a 151-stage nand ring oscillator using LEVEL 49,
Tparallel is about 80% of T1cpu (the CPU time associated with a
single CPU), if you run with two threads on a multi-CPU machine.
Ideally, assuming Toverhead = 0, you can achieve a speedup of:

Tlcpu/ (0. 2T1lcpu + 0.8Tlcpu/ 2cpus) = 1.67
The typical Tparallel value is 0.6 to 0.7, for moderate to large circuits.

HSPICE Output Files

HSPICE produces various types of output files, listed in Table 3-19.
Table 3-19 HSPICE Output Files and Suffixes

Output File Type Extension
Output listing lis, or user-specified
Transient analysis results tr# t
Transient analysis measurement results .mt#

DC analysis results SwWi# T

DC analysis measurement results .ms#

AC analysis results .ac# t

AC analysis measurement results .ma#
Hardcopy graph data (from meta.cfg gr# Tt
PRTDEFAULT)

Digital output .az2d

FFT analysis graph data JeHTTT
Subcircuit cross-listing pa#t

Simulation Input and Controls: HSPICE Output Files

3-76

Table 3-19 HSPICE Output Files and Suffixes (Continued)

Output File Type Extension
Output status .St#
Operating point node voltages (initial Jic#
conditions)

Either a sweep number, or a hardcopy file number.
T Created only if you use .POST to generate graphical data.

tT Requires a .GRAPH statement, or a pointer to a file, in the
meta.cfg file. The PC version of HSPICE does not generate
this file.

11 Created only if you use a .FFT statement.

The files are listed in Table 3-19 on page 3-76 and described below.

Output listing can appear as output_file (no file extension),
output_file.lis, or with a file extension that you specify, depending on
which format you use to start the simulation. Output_file is the output
file specification, not including any extension. This file includes the
following information:

« Name of the simulator used.

« Version of the HSPICE simulator used.

e Synopsys message block.

* Input file name.

« User name.

» License details.

« Copy of the input netlist file.

* Node count.

« Operating point parameters.

Simulation Input and Controls: HSPICE Output Files
3-77

» Details of the volt drop, current, and power for each source and
subcircuit.

« Low-resolution plots, originating from the .PLOT statement.
* Results of .PRINT statement.
* Results of .OPTION statements.

HSPICE places transient analysis results in output_file. tr#, where #
Is 0-9 or a-z, and follows the -n argument. This file lists the numerical
results of transient analysis. A .TRAN statement in the input file,
together with an .OPTION POST statement, creates this post-
analysis file.

The output file is in proprietary binary format if POST =0 or 1, or in
ASCII format if POST = 2. You can also use the explicit expressions
POST = BINARY, or POST=ASCII.

HSPICE writes transient analysis measurement results to
output_file.mt#. The .MEASURE TRAN statement creates this
output file.

DC analysis results appear in output_file.sw#, which a .DC
statement produces. This file contains the results of the applied
stepped or swept DC parameters, defined in that statement. The
results can include noise, distortion, or network analysis.

If the input file includes a .MEASURE DC statement, the output_file.
ms# file specifies the DC analysis measurement results.

HSPICE places AC analysis results in output_file.ac#. These results
list the output variables as a function of frequency, according to your
specifications following the .AC statement.

If the input file contains a .MEASURE AC statement, then
output_file.ma# contains AC analysis measurement results.

Simulation Input and Controls: HSPICE Output Files

3-78

HSPICE places hardcopy graph data in output_file.gr#, which

a .GRAPH statement produces. It is in the form of a printer file,
typically in Adobe PostScript or HP PCL format. This facility is not
available in the PC version of HSPICE.

Digital output contains data that the A2D conversion option of the U
element converted to digital form.

FFT analysis graph data contains the graphical data needed to
display the FFT analysis waveforms.

If the input netlist includes subcircuits, HSPICE automatically
generates the subcircuit cross-listing, and writes it into
output_file.pa#. This file relates the subcircuit node names, in the
subcircuit call, to the node names used in the corresponding
subcircuit definitions.

Use the output file specification, with a .st# extension, to name the
output status. The output status contains the following runtime
reports:

« Start and end times for each CPU phase.
« Options settings, with warnings for obsolete options.

« Status of pre-processing checks for licensing, input syntax,
models, and circuit topology.

« Convergence strategies that HSPICE uses on difficult circuits.

You can use the information in this file to diagnose problems,
particularly when communicating with Synopsys Customer Support.

Operating point node voltages are DC operating point initial
conditions, which the .SAVE statement stores.

Simulation Input and Controls: HSPICE Output Files
3-79

Simulation Input and Controls: HSPICE Output Files
3-80

Elements

Elements are local, and sometimes customized, instances of a
device model, specified in your design netlist.

For descriptions of the standard device models on which elements
(instances) are based, see the HSPICE Elements and Device
Models Manual, and the HSPICE MOSFET Models Manual.

This chapter describes the syntax for the basic elements of a circuit
netlist in HSPICE. Refer to the HSPICE Elements and Device
Models Manual for detailed syntax descriptions and model
descriptions.

This chapter explains the following topics:
 Passive Elements
 Active Elements

e Transmission Lines

Elements:
4-1

« Buffers

Passive Elements

Resistors

The general syntax for a resistor element in a HSPICE netlist is:

SYNTAX:

Rxxx nl1l n2 <mane> Rval <TCl <TC2>> <SCALE=val > <Meval >
+<AC=val > <DTEMP=val > <L=val > <Wval > <C=val >

Rxxx nl n2 <manme> <R = >resistance <<TCl = >val >
+ <<TC2 = >val > <SCALE = val > <M = val > <AC = val >
+ <DTEMP = val > <L = val > <W= val > <C = val >

Rxxx nl n2 R='user-defined_equation’

Resistance can be a value (in units of ohms) or an equation.
Required fields are the two nodes, and the resistance or the model
name. If you use the parameter labels, the node and model name
must precede the labels. Other arguments can follow in any order. If
you specify a resistor model (see Chapter 2 in the HSPICE Elements
and Device Models Manual), the resistance value is optional.:

Table 4-1 Resistor Syntax

Parameter | Description

RXxxx Resistor element name. Must begin with R, followed by up to 1023 alphanumeric
characters.

nl Positive terminal node name.

n2 Negative terminal node name.

mname Resistor model name. Use this name in elements, to reference a resistor model.

TC1 First-order temperature coefficient for the resistor. Refer to Chapter 2, “Using

Passive Device Models”, in the HSPICE Elements and Device Models Manual,
for temperature-dependent relations.

TC2 Second-order temperature coefficient for the resistor.

Elements: Passive Elements
4-2

Table 4-1 Resistor Syntax (Continued)
Parameter | Description
SCALE Element scale factor; scales resistance and capacitance by its value.
Default = 1.0.
R= Resistance value at room temperature. This can be:
resistance |, 3 numeric value in ohms
e aparameter in ohms
» a function of any node voltages
» afunction of branch currents
» any independent variables, such as:
o time
» frequency (HERTZ)
» temperature
M Multiplier to simulate parallel resistors. For example, for two parallel instances of
a resistor, set M = 2, to multiply the number of resistors by 2. Default = 1.0.
AC Resistance for AC analysis. Default = Reff.
DTEMP Temperature difference between the element and the circuit, in degrees Celsius.
Default = 0.0.
L Resistor length in meters. Default=0.0, if you did not specify L in a resistor model.
W Resistor width. Default = 0.0, if you did not specify W in the model.
C Capacitance connected from node n2 to bulk. Default = 0.0, if you did not specify

C in a resistor model.

user-defined
equation

Can be a function of any node voltages, element currents, temperature,
frequency, and time

HSPICE Examples

In the following example, the R1 resistor connects from the Rnodel
node to the Rnode2 node, with a resistance of 100 ohms.

R1 Rnodel Rnode2 100

The rc1 resistor connects from node 12 to node 17, with a resistance
of 1 kilohm, and temperature coefficients of 0.001 and 0.

RC1 12 17 R = 1k TC1 = 0.001 TC2 = O

The Rterm resistor connects from the input node to ground, with a
resistance determined by the square root of the analysis frequency
(non-zero for AC analysis only).

Elements: Passive Elements
4-3

Rterminput gnd R = ’'sqrt (HERTZ)’

The Rxxx resistor, from node 98999999 to node 87654321, with a
resistance of 1 ohm for DC and time-domain analyses, and 10
gigohms for AC analyses.

Rxxx 98999999 87654321 1 AC = 1lelO

Linear Resistors

SYNTAX:

The input syntax of a resistor is:

Rxxx nodel node2 < nobdelname > < R = > value < TCl1
+ < TC2
+ < C = val

val > < M = val
> < SCALE = val >

=val >< W=val >< L =
> < DTEMP = val

Table 4-2 Resistor Syntax

>

val

>

Parameter Description

Rxxx Name of a resistor.

nodelandnode2 | Names or numbers of the connecting nodes.
modelname Name of the resistor model.

value Nominal resistance value, in ohms.

R Resistance, in ohms, at room temperature.
TC1,TC2 Temperature coefficient.

w Resistor width.

L Resistor length.

M Parallel multiplier.

C Parasitic capacitance between node2 and the substrate.
DTEMP Temperature difference between element and circuit.

Elements: Passive Elements

4-4

Table 4-2 Resistor Syntax (Continued)

Parameter Description
SCALE Scaling factor.
EXAMPLE:

The first resistor, R1, is a simple 10-ohm linear resistor. The second
resistor, Rload, calls a resistor model named RVAL, defined later in
the netlist.

Note: If a resistor calls a model, then you do not need to specify a
constant resistance, as you do with R1.

 R3takes its value from the RX parameter, and uses the TC1 and
TC2 temperature coefficients, which become 0.001 and O,
respectively.

» RP spans across different circuit hierarchies, and is 0.5 ohms.

R1 12 10.0
Rl oad 1 G\ND RVAL

. param r x=100

R3 23 RXTCL =0.001 TC2 =0
RP X1.A X2.X5.B .5

. MODEL RVAL R

Behavioral Resistors
HSPICE supports resistors with the following equation type:

Rxxx nl n2 . . . <R=> ‘equation’

Note: The equation can be a function of any node voltage, and any
branch current, but not a function of time, frequency, or
temperature.

EXAMPLE:

RLABR-="'V(A + |(VDD)’

Elements: Passive Elements
4-5

Capacitors

The general syntax for a capacitor element is:

Cxxx nl n2 <mane> <C = >capacitance <<TCl = >val >
+ <<TC2 = >val > <SCALE = val> <IC = val > <M = val >
+ <W= val > <L = val > <DTEMP = val >

Cxxx nl1l n2 <C = >"equation’ <CTYPE = 0| 1>
+ <above_options...>

Polynomial Form
Cxxx nl n2 POLY cO cl... <above options...>

You can specify capacitance as a numeric value, in units of farads,
as an equation, or as a polynomial of the voltage. The only required
fields are the two nodes, and the capacitance or model name.

« Ifyou use the parameter labels, the nodes and model name must
precede the labels. Other arguments can follow in any order.

* If you specify a capacitor model (see Chapter 2, in the HSPICE
Elements and Device Models Manual), the capacitance value is
optional.

If you use an equation to specify capacitance, the cryre parameter
determines how HSPICE calculates the capacitance charge. The
calculation is different, depending on whether the equation uses a
self-referential voltage (that is, the voltage across the capacitor,
whose capacitance is determined by the equation).

To avoid syntax conflicts, if a capacitor model has the same name as
a capacitance parameter, HSPICE uses the model name.
EXAMPLE:

In the following example, C1 assumes its capacitance value from the
model, not the parameter.

Elements: Passive Elements

4-6

. PARAMETER CAPXX =1
Cl 1 2 CAPXX
. MODEL CAPXX C CAP =1

Table 4-3 Example Capacitance Syntax

Parameter Description

Cxxx Capacitor element name. Must begin with C, followed by up to 1023
alphanumeric characters.

nl Positive terminal node name.

n2 Negative terminal node name.

mname Capacitance model name. Elements use this name to reference a capacitor.

C = capacitance

Capacitance at room temperature—a numeric value or a parameter in farads.

TC1

First-order temperature coefficient for the capacitor. Refer to Chapter 2,
“Using Passive Device Models”, in the HSPICE Elements and Device Models
Manual, for temperature-dependant relations.

TC2 Second-order temperature coefficient, for the capacitor.

SCALE Element scale parameter, scales capacitance by its value. Default = 1.0.

IC Initial voltage across the capacitor, in volts. If you specify UIC in the .TRAN
statement, HSPICE uses this value as the DC operating point voltage.
The .IC statement overrides it.

M Multiplier, used to simulate multiple parallel capacitors. Default = 1.0

W Capacitor width, in meters. Default = 0.0, if you did not specify Win a
capacitor model.

L Capacitor length, in meters. Default = 0.0, if you did not specify L in a
capacitor model.

DTEMP Element temperature difference from the circuit temperature, in degrees

Celsius. Default = 0.0.

C ="equation’

Capacitance at room temperature, specified as a function of:

* any node voltages

e any branch currents

» any independent variables, such as:
» time

» frequency (HERTZ)

» temperature

Elements: Passive Elements
4-7

Table 4-3 Example Capacitance Syntax (Continued)

Parameter Description

CTYPE

Determines capacitance charge calculation, for elements with capacitance
equations. If the capacitance equation is a function of v(n1,n2), set
CTYPE = 1. Use this setting correctly, to ensure proper capacitance
calculations, and correct simulation results. Default = 0.

POLY

Keyword, to specify capacitance as a non-linear polynomial.

cOcl...

Coefficients of a polynomial, described as a function of the voltage across the
capacitor. cO represents the magnitude of the Oth order term, c1 represents
the magnitude of the 1st order term, and so on. You cannot use parameters
as coefficient values.

EXAMPLE:

In the following example, the C1 capacitors connect from node 1 to
node 2, with a capacitance of 20 picofarads:

ClL 12 20p

Cshunt refers to three capacitors in parallel, connected from the
node output to ground, each with a capacitance of 100 femtofarads.

Cshunt output gnd C = 100f M= 3

The Cload capacitor connects from the driver node to the output
node. The capacitance is determined by the voltage on the
capcontrol node, times 1E-6. The initial voltage across the capacitor
is O volts.

Cl oad driver output C = ’1lu*v(capcontrol)’ CTYPE =1

+ 1C = 0v

The C99 capacitor connects from the in node to the out node. The
capacitance is determined by the polynomial C = c0 + c1*v + c2*v*v,
where v is the voltage across the capacitor.

C99 in out POLY 2.0 0.5 0.01

Elements: Passive Elements

4-8

Linear Capacitors

SYNTAX:

The input syntax of a capacitor is:

Cxxx nodel node2 < nodel name > < C = > val ue
< TCl1 = val >

+ < TC2 =val > <W=val > < L =val > < DTEMP = val >
+ < M=val > < SCALE =val > < |IC =val >

Table 4-4 Capacitor Syntax

Parameter Description
Cxxx Name of a capacitor. Must begin with C, followed by up to 1023
alphanumeric characters.
nodel and node2 | Names or numbers of connecting nodes.
value Nominal capacitance value, in Farads.
modelname Name of the capacitor model.
C Capacitance, in Farads, at room temperature.
TC1, TC2 Specifies the temperature coefficient.
W Capacitor width.
L Capacitor length.
M Multiplier to simulate multiple parallel capacitors.
DTEMP Temperature difference between element and circuit.
SCALE Scaling factor.
IC Initial capacitor voltage.
EXAMPLE:
Cbypass 1 0 10PF
Cl 2 3 CBX
. MODEL CBX C

CBBO 10P IC = 4V
CP X1.XA.1 0 0.1P

Elements: Passive Elements

4-9

In this example:
* Cbypass is a straightforward, 10-picofarad (PF) capacitor.

e (1, which calls the CBX model, does not have a constant
capacitance.

 CBis a 10 PF capacitor, with an initial voltage of 4V across it.
« CPisa0.1 PF capacitor.

Behavioral Capacitors
HSPICE supports capacitors with the following equation type:

Cxxx n1 n2 . . . C'equation’ CTYPE=0, 1 or 2

Note: You can specify the capacitor value as a function of any node
voltage, and any branch current, but not as a function of time,
frequency, or temperature.

CTYPE Parameter

crype determines the calculation mode, for elements that use
capacitance equations. Set this parameter carefully, to ensure
correct simulation results.

« CTYPE=0, if C depends only on its own terminal voltages—that
Is, a function of V(n1, n2).

« CTYPE=], if C depends only on outside voltages or currents.

EXAMPLE 1:CTYPE

V110 pw(On Ov 100n 10v)
V2 2 0 pwi (On Ov 100n 10v)
Cl 10CTYPE = (M1 + V(2))*1le-12

Elements: Passive Elements
4-10

Charge-Conserving Capacitors

Cxxxnln2...Q ="‘equation’

_dQ -
C v’ V=V(nln2)

Cxxx a b Q="f(V(a,b))’

The above equation is equivalent to:

Cxxx a b Q="f(V(a,b))’ where d(x) = %19

EXAMPLE 1:

ClabQ="sin(V(a,b)) + V(c,d)*V(a, b)’
The above equation is equivalent to:
ClabC="cos (Vab)) + V(c,d)’

Note: Charge-conserving capacitors are a more-accurate solution.

Inductors
General Form

Lxxx nl1l n2 <L = >i nductance <mame> <<TCl = >val >
+ <<TC2 = >val > <SCALE = val > <IC = val > <M = val >
+ <DTEMP = val > <R = val >

Lxxx nl n2 L = ‘equation’ <LTYPE = val > <above_options...>

Polynomial Form

Lxxx nl n2 POLY cO cl... <above options...>

Elements: Passive Elements
4-11

Magnetic Winding Form

Lxxx nl1l n2 NT = turns <above options...>

In this syntax, the inductance can be either a value (in units of
henries), an equation, a polynomial of the current, or a magnetic
winding. Required fields are the two nodes, and the inductance or
model name.

If you use parameter labels, the nodes and model name must be

first. Other arguments can be in any order.

If you specify an inductor model (see Chapter 2 in the HSPICE
Elements and Device Models Manual), the inductance value is
optional.

Table 4-5 Inductor Syntax (Sheet 1 of 2)

Parameter Description

Lxxx Inductor element name. Must begin with L, followed by up to 1023
alphanumeric characters.

nl Positive terminal node name.

n2 Negative terminal node name.

TC1 First-order temperature coefficient for the inductor. Refer to Chapter 2, “Using
Passive Device Models”, in the HSPICE Elements and Device Models
Manual, for temperature-dependent relations.

TC2 Second-order temperature coefficient for the inductor.

SCALE Element scale parameter; scales inductance by its value. Default = 1.0.

IC Initial current through the inductor, in amperes. HSPICE uses this value as
the DC operating point voltage, when you specify UIC in the .TRAN
statement. The .IC statement overrides it.

Elements: Passive Elements

4-12

Table 4-5 Inductor Syntax (Sheet 2 of 2)

Parameter

Description

L = inductance

Inductance value. This can be:

e anumeric value, in henries

* a parameter in henries

» afunction of any node voltages

» afunction of branch currents

» any independent variables, such as:
o time
» frequency (HERTZ)
» temperature

M Multiplier, used to simulate parallel inductors. Default = 1.0.
DTEMP Temperature difference between the element and the circuit, in degrees
Celsius. Default = 0.0.
R Resistance of the inductor, in ohms. Default = 0.0.
L = ‘equation’ |Inductance at room temperature, specified as:
» afunction of any node voltages
» a function of branch currents
» any independent variables, such as:
» time
» frequency (HERTZ)
» temperature
LTYPE Calculates inductance flux for elements, using inductance equations. If the
inductance equation is a function of i (Lxxx) , thensetLTYPE = 1. Use this
setting correctly, to ensure proper inductance calculations, and correct
simulation results. Default = 0.
POLY Keyword that specifies the inductance, calculated by a polynomial.
cOcl... Coefficients of a polynomial in the current, describing the inductor value. c0
is the magnitude of the Oth order term, c1 is the magnitude of the 1st order
term, and so on.
NT = turns Number of turns of an inductive magnetic winding.
mname Saturable core model name. See Chapter 2, “Using Passive Device Models”,

in the HSPICE Elements and Device Models Manual for model information.

Elements: Passive Elements
4-13

EXAMPLE:

In the following example, the L1 inductor connects from the coilin
node to the coilout node, with an inductance of 100 nanohenries.

L1 coilin coilout 100n

The Lloop inductor connects from node 12 to node 17. Its inductance
Is 1 microhenry, and its temperature coefficients are 0.001 and 0.

Lloop 12 17 L = 1u TC1 = 0.001 TC2 = 0

The Lcoil inductor connects from the input node to ground. Its
inductance is determined by the product of the current through the
inductor, and 1E-6.

Lcoil input gnd L = "1u*i(input)’ LTYPE =0
The L99 inductor connects from the in node to the out node. Its
inductance is determined by the polynomial L = cO + c1*i + c2*i*i,

where i is the current through the inductor. The inductor also has a
specified DC resistance of 10 ohms.

L99 in out POLY 4.0 0.35 0.01 R = 10

The L inductor connects from node 1 to node, as a magnetic winding
element, with 10 turns of wire.

L12NT-=10

Mutual Inductors

The general syntax for a mutual inductor element is:

Kxxx Lyyy Lzzz <K = >coupling

Mutual Core Form

Kaaa Lbbb <Lccc ... <Lddd>> mane <MAG = nmgneti zati on>

Elements: Passive Elements

4-14

In this syntax, coupling is a unitless value, from zero to one,
representing the coupling strength. If you use parameter labels, the
nodes and model name must be first. Other arguments can be in any
order. If you specify an inductor model (see Chapter 2, “Using
Passive Device Models”, in the HSPICE Elements and Device
Models Manual), the inductance value is optional.

Table 4-6 Mutual Inductor Syntax

Parameter Description

KXxx Mutual inductor element name. Must begin with K, followed by up to 1023
alphanumeric characters.

Lyyy Name of the first of two coupled inductors.

Lzzz Name of the second of two coupled inductors.

K = coupling Coefficient of mutual coupling. K is a unitless number, with magnitude > 0
and < 1. If K is negative, the direction of coupling reverses. This is equivalent
to reversing the polarity of either of the coupled inductors. Use the

K = coupling syntax when using a parameter value or an equation.

Kaaa Saturable core element name. Must begin with K, followed by up to 1023
alphanumeric characters.

Lbbb, Lccc, Names of the windings about the Kaaa core. One winding element is

Lddd required, and each winding element must use the magnetic winding syntax.

mname Saturable core model name. See Chapter 2, “Using Passive Device
Models”, in the HSPICE Elements and Device Models Manual for model
information.

MAG = Initial magnetization of the saturable core. You can set this to +1, 0, or -1,

magnetization |where +/- 1 refer to positive and negative values of the BS model parameter
(see Chapter 2, “Using Passive Device Models”, in the HSPICE Elements
and Device Models Manual).

You can determine the coupling coefficient, based on geometric and
spatial information. To determine the final coupling inductance,
HSPICE divides the coupling coefficient by the square-root of the
product of the self-inductances.

Elements: Passive Elements
4-15

When using the mutual inductor element to calculate the coupling
between more than two inductors, HSPICE can automatically
calculate an approximate second-order coupling. See the third
example below, for a specific situation.

Note: The automatic inductance calculation is an estimation, and is
accurate for a subset of geometries. The second-order
coupling coefficient is the product of the two first-order
coefficients, which is not correct for many geometries.

EXAMPLE:

The Lin and Lout inductors are coupled, with a coefficient of 0.9.
K1 Lin Lout 0.9

The Lhigh and Llow inductors are coupled, with a coefficient equal to
the value of the COUPLE parameter.

Kxfnr Lhigh Llow K = COUPLE
e The K1 mutual inductor couples L1 and L2.
* The K2 mutual inductor couples L2 and L3.

The coupling coefficients are 0.98 and 0.87. HSPICE automatically
calculates the mutual inductance between L1 and L3, with a
coefficient of 0.98*0.87 = 0.853.

Kl L1 L2 0.98
K2 L2 L3 0.87

Elements: Passive Elements

4-16

Linear Inductors

SYNTAX:

Lxxx nodel node2 <L => i nductance <TCl = val > <TC2 =
+ <M = val > <DTEMP = val > <IC = val >

Table 4-7 Linear Inductor Syntax

val >

Parameter Description
Lxxx Name of an inductor.
nodel and node2 Names or numbers of the connecting nodes.
inductance Nominal inductance value, in Henries.
L Inductance, in Henries, at room temperature.
TC1,TC2 Temperature coefficient.
M Multiplier for parallel inductors.
DTEMP Temperature difference between the element and the circuit.
IC Initial inductor current.

EXAMPLE:

LX A B 1E-9

LR1 0 1u IC = 10mA
e LXisalnH inductor.

e LR is a1l uH inductor, with an initial current of 10 mA.

Active Elements

Diode Element

The general syntax for a diode element is:

Elements: Active Elements

4-17

Geometric (LEVEL=1) or Non-Geometric (LEVEL=3)
Form
Dxxx nplus nm nus mmane <<AREA = >area> <<PJ = >val >

+ <WP = val > <LP = val > <WM = val > <LM = val > <CFF>
+ <|C = vd> <M = val > <DTEMP = val >

Dxxx npl us nm nus mane <W= wi dth> <L = | ength> <WP = val >
+<LP = val><WM = val ><LM = val > <OFF><IC = vd><M = v

+ <DTEMP = val >

Fowler-Nordheim (LEVEL = 2) Form

Dxxx nplus nm nus mmane <W= val <L = val>> <W = val >
+ <OFF> <IC = vd> <M = val >

The only required fields are the two nodes, and the model name. If
you use the parameter labels, the nodes and model name must be
first, and the other optional arguments can be in any order.

Table 4-8 Diode Element Syntax

Parameter

Description

Dxxx

Diode element name. Must begin with D, followed by up to 1023
alphanumeric characters.

nplus

Positive terminal (anode) node name. The series resistor for the equivalent
circuit is attached to this terminal.

nminus

Negative terminal (cathode) node name.

mname

Diode model name reference.

AREA

Area of the diode (unitless for LEVEL = 1 diode, and square meters for
LEVEL = 3 diode). This affects saturation currents, capacitances, and
resistances (diode model parameters are IK, IKR, JS, CJO, and RS). The
SCALE option does not affect the area factor for the LEVEL = 1 diode.
Default = 1.0. Overrides AREA from the diode model. If you do not specify the
AREA, HSPICE calculates it from the width and length.

PJ

Periphery of junction (unitless for LEVEL = 1 diode, and meters for LEVEL=3
diode). Overrides PJ from the diode model. If you do not specify PJ, HSPICE
calculates it from the width and length specifications.

Elements: Active Elements

4-18

Table 4-8 Diode Element Syntax (Continued)

Parameter Description

WP Width of polysilicon capacitor, in meters (for LEVEL = 3 diode only).
Overrides WP in the diode model. Default = 0.0.

LP Length of polysilicon capacitor, in meters (for LEVEL = 3 diode only).
Overrides LP in the diode model. Default = 0.0.

WM Width of metal capacitor, in meters (for LEVEL = 3 diode only). Overrides WM
in the diode model. Default = 0.0.

LM Length of metal capacitor, in meters (for LEVEL = 3 diode only). Overrides
LM in the diode model. Default = 0.0.

OFF Sets the initial condition for this element to OFF, in DC analysis. Default=ON.

IC =vd Initial voltage, across the diode element. Use this value when you specify the
UIC option in the .TRAN statement. The .IC statement overrides this value.

M Multiplier, to simulate multiple diodes in parallel. The M setting affects all
currents, capacitances, and resistances. Default = 1.

DTEMP The difference between the element temperature and the circuit temperature,
in degrees Celsius. Default = 0.0.

w Width of the diode, in meters (LEVEL=3 diode model only)

L Length of the diode, in meters (LEVEL = 3 diode model only)

Examples

The D1 diode, with anode and cathode, connects to nodes 1 and 2.

Diodel specifies the diode model.

D1 1 2 diodel

The Dprot diode, with anode and cathode, connects to the output
node. Ground references the firstd diode model, and specifies an
area of 10 (unitless for LEVEL = 1 model). The initial condition has
the diode OFF.

Dprot output gnd firstd 10 OFF

Elements: Active Elements
4-19

The Ddrive diode, with anode and cathode, connects to the driver
and output nodes. The width and length are 500 microns. This diode
references the model_d diode model.

Ddrive driver output nodel _ d W= 5e-4 L =5e-41C=0.2

Bipolar Junction Transistor (BJT) Element

The general syntax for a BJT element is:

SYNTAX:

XXxx nc nb ne <ns> mane <area> <OFF>
+ <I C = vbeval ,vceval > <M = val > <DTEMP = val >

or

Xxx nc nb ne <ns> mane <AREA = area> <AREAB = val >
+ <AREAC = val > <OFF> <VBE = vbeval > <VCE = vceval >
+ <M = val > <DTEMP = val >

The only required fields are the collector, base, and emitter nodes,
and the model name. The nodes and model name must precede
other fields in the netlist.

Elements: Active Elements

4-20

Table 4-9 BJT Element Syntax

Parameter | Description

QxXxx BJT element name. Must begin with Q, then up to 1023 alphanumeric characters.

nc Collector terminal node name.

nb Base terminal node name.

ne Emitter terminal node name.

ns Substrate terminal node name, which is optional. You can also use the BULK
parameter to set this name in the BJT model.

mname BJT model name reference.

area, Emitter area multiplying factor, which affects currents, resistances, and

AREA = area | capacitances. Default = 1.0.

OFF Sets initial condition for this element to OFF, in DC analysis. Default=ON.

IC = vbeval, |Initialinternal base-emitter voltage (vbeval) and collector-emitter voltage (vceval).

vceval, VBE, |HSPICE uses this value when the .TRAN statement includes UIC. The .IC

VCE statement overrides it.

M Multiplier, to simulate multiple BJTs in parallel. The M setting affects all currents,
capacitances, and resistances. Default = 1.

DTEMP The difference between the element temperature and the circuit temperature, in
degrees Celsius. Default = 0.0.

AREAB Base area multiplying factor, which affects currents, resistances, and
capacitances. Default = AREA.

AREAC Collector area multiplying factor, which affects currents, resistances, and
capacitances. Default = AREA.

EXAMPLE:

In the Q1 BJT element below:

QL 1 2 3 nodel _1

The collector connects to node 1.
The base connects to node 2.
The emitter connects to node 3.

Elements: Active Elements
4-21

 model_1 references the BJT model.
In the Qopampl BJT element below:

Qopanpl cl1 b3 e2 s lstagepnp AREA = 1.5 AREAB = 2.5
AREAC = 3.0

» The collector connects to the c1 node.
« The base connects to the b3 node.

« The emitter connects to the e2 node.
» The substrate connects to the s node.
« 1stagepnp references the BJT model.
« The AREA area factor is 1.5.

« The AREAB area factor is 2.5.

« The AREAC area factor is 3.0.

In the Qdrive BJT element below:

Qdrive driver in output nodel _npn 0.1

« The collector connects to the driver node.
« The base connects to the in node.

» The emitter connects to the output node.
 model_npn references the BJT model.

e The area factoris 0.1.

Elements: Active Elements
4-22

JFETs and MESFETs
SYNTAX:

Jxxx nd ng ns <nb>
+ <L =

mane <<<AREA> = area | <W= val >

val >> <OFF> <I C = vdsval, vgsval > <M = val >

+ <DTEMP = val >

Jxxx nd ng ns <nb> mmanme <<<AREA> = area> | <W= val >
+ <L = val >> <OFF> <VDS = vdsval > <VGS = vgsval >
+ <M = val > <DTEMP = val >

Only drain, gate, and source nodes, and model name fields are
required. Node and model names must precede other fields.

Table 4-10 JFET/MESFET Syntax

Parameter | Description

JXXX JFET or MESFET element name. Must begin with J, followed by up to 1023
alphanumeric characters.

nd Drain terminal node name

ng Gate terminal node name

ns Source terminal node name

nb Bulk terminal node name, which is optional.

mname JFET or MESFET model name reference

area, Area multiplying factor that affects the BETA, RD, RS, IS, CGS, and CGD model

AREA = area | parameters. Default = 1.0, in units of square meters.

W FET gate width in meters

L FET gate length in meters

OFF Sets initial condition to OFF for this element, in DC analysis. Default = ON.

IC =vdsval, |Initial internal drain-source voltage (vdsval) and gate-source voltage (vgsval).

vgsval, VDS, |Use this argument when the .TRAN statement contains UIC. The .IC statement

VGS overrides it.

M Multiplier to simulate multiple JFETs or MESFETs in parallel. The Msetting affects
all currents, capacitances, and resistances. Default = 1.

DTEMP The difference between the element temperature and the circuit temperature, in

degrees Celsius. Default = 0.0.

Elements: Active Elements
4-23

EXAMPLE:
In the J1 JFET element below:

J1 1 2 3 nodel 1
The drain connects to node 1.

The source connects to node 2.
The gate connects to node 3.

model_1 references the JFET model.

In the Jopampl JFET element below:

Jopanpl d1 g3 s2 b 1stage AREA = 100u
The drain connects to the d1 node.

The source connects to the g3 node.
The gate connects to the s2 node.
1stage references the JFET model.

The area is 100 microns.

In the Jdrive JFET element below:

Jdrive driver in output nodel jfet W= 10u L
The drain connects to the driver node.

The source connects to the in node.
The gate connects to the output node.
model_jfet references the JFET model.
The width is 10 microns.

The length is 10 microns.

Elements: Active Elements

4-24

10u

MOSFETSs
SYNTAX:

Mkxx nd ng ns <nb> mmane <<L = >| ength> <<W = >w dt h>

+ <AD = val > AS = val > <PD = val > <PS = val >

+ <NRD = val > <NRS = val > <RDC = val > <RSC = val > <OFF>
+ <I C = vds, vgs, vbs> <M = val > <DTEMP = val >

+ <GEO = val > <DELVTO = val >

. OPTI ON W

Mkxx nd ng ns <nb> mane <w dt h> <l engt h> <ot her _options...>

The only required fields are the drain, gate and source nodes, and
the model name. The nodes and model name must precede other

fields in the netlist. If you did not specify a label, use the second

syntax with the .OPTION WL statement, to exchange the width and
length options.

Table 4-11 MOSFET Element Syntax

Parameter | Description

MXXX MOSFET element name. Must begin with M, followed by up to 1023
alphanumeric characters.

nd Drain terminal node name.

ng Gate terminal node name.

ns Source terminal node name.

nb Bulk terminal node name, which is optional. To set this argument in the
MOSFET model, use the BULK parameter.

mname MOSFET model name reference

L MOSFET channel length, in meters. This parameter overrides
.OPTION DEFL. Default = DEFL, with a maximum value of 0.1m.

W MOSFET channel width, in meters. This parameter overrides DEFW in
an .OPTION statement. Default = DEFW.

AD Drain diffusion area. Overrides DEFAD in the .OPTION statement.
Default = DEFAD, if you set the ACM = 0 model parameter.

Elements: Active Elements

4-25

Table 4-11 MOSFET Element Syntax (Continued)

Parameter

Description

AS

Source diffusion area. Overrides DEFAS in the .OPTION statement.
Default = DEFAS, if you set the ACM = 0 model parameter.

PD

Perimeter of drain junction, including channel edge. Overrides
.OPTION DEFPD. Default = DEFAD, if you set the ACM = 0 or 1 model
parameter. Default = 0.0, if you set ACM = 2 or 3.

PS

Perimeter of source junction, including channel edge. Overrides
.OPTION DEFPS. Default = DEFAS, if you set the ACM = 0 or 1 model
parameter. Default = 0.0, if you set ACM = 2 or 3.

NRD

Number of squares of drain diffusion for resistance calculations.
Overrides .OPTION DEFNRD. Default = DEFNRD, if you set ACM =
0 or 1 model parameter. Default = 0.0, if you set ACM =2 or 3.

NRS

Number of squares of source diffusion, for resistance calculations.
Overrides DEFNRS in the .OPTION statement. Default = DEFNRS when
you setthe MOSFET model parameter ACM = 0 or 1. Default = 0.0, when
you set ACM =2 or 3.

RDC

Additional drain resistance due to contact resistance, in units of ohms.
This value overrides the RDC setting in the MOSFET model specification.
Default = 0.0.

RSC

Additional source resistance due to contact resistance, in units of ohms.
This value overrides the RSC setting in the MOSFET model specification.
Default = 0.0.

OFF

Sets initial condition for this element to OFF, in DC analysis.
Default = ON. This command does not work for depletion devices.

IC = vds,
vgs, vbs

Initial voltage across external drain and source (vds), gate and source
(vgs), and bulk and source terminals (vbs). Use these arguments
with .TRAN UIC. .IC statements override these values.

M

Multiplier, to simulate multiple MOSFETSs in parallel. Affects all channel
widths, diode leakages, capacitances, and resistances. Default = 1.

DTEMP

The difference between the element temperature and the circuit
temperature, in degrees Celsius. Default = 0.0.

GEO

Source/drain sharing selector, for a MOSFET model parameter value of
ACM = 3. Default = 0.0.

DELVTO

Zero-bias threshold voltage shift. Default = 0.0.

Elements: Active Elements

4-26

EXAMPLE:

In the M1 MOSFET element below:

ML 1 2 3 nodel 1
« The drain connects to node 1.

» The gate connects to node 2.

» The source connects to node 3.
 model_1 references the MOSFET model.
In the Mopampl MOSFET element below:

Mopanpl dl1 g3 s2 b 1stage L = 2u W= 10u
 The drain connects to the d1 node.

* The gate connects to the g3 node.

« The source connects to the s2 node.

» 1stage references the MOSFET model.
« The length of the gate is 2 microns.

» The width of the gate is 10 microns.

In the Mdrive MOSFET element below:

Mdrive driver in output bsinmBv3 W= 3u L = 0. 25u
+ DTEMP = 4.0

e The drain connects to the driver node.

* The gate connects to the in node.

» The source connects to the output node.
e bsim3v3 references the MOSFET model.
« The length of the gate is 3 microns.

» The width of the gate is 0.25 microns.

* The device temperature is 4 degrees Celsius higher than the
circuit temperature.

Elements: Active Elements
4-27

Transmission Lines

A transmission line is a passive element that connects any two
conductors, at any distance apart. One conductor sends the input
signal through the transmission line, and the other conductor
receives the output signal from the transmission line. The signal that
Is transmitted from one end of the pair to the other end, is voltage
between the conductors.

Examples of transmission lines include:

Power transmission lines.

Telephone lines.

Waveguides.

Traces on printed circuit boards and multi-chip modules (MCMs).
Bonding wires in semiconductor IC packages.

On-chip interconnections.

Input Syntax for the W Element

The W element supports four different formats, to specify the
transmission line properties:

Model 1: RLGC-Model specification.

- Internally specified in a .model statement.

- Externally specified in a different file.

Model 2: U-Model specification.

- RLGC input for up to five coupled conductors.
- Geometric input (planer, coax, twin-lead).

- Measured-parameter input.

Elements: Transmission Lines

4-28

- Skin effect.
* Model 3: Built-in field solver model.
* Model 4: Frequency-dependent tabular model.
The input syntax for the W element card is:

Wxx i1l i2 ... iNiRol o2 ... oN oR N=val L=val
+ TABLEMODEL=nane

Table 4-12 W Element Input Syntax

Parameter Description

N Number of signal conductors (excluding the reference conductor).
il...iN Node names for the near-end signal-conductor terminal.

iR Node name for the near-end reference-conductor terminal.
0l...oN Node names for the far-end signal-conductor terminal.

oR Node name for the far-end reference-conductor terminal.

L Length of the transmission line.

TABLEMODEL Name of the frequency-dependent tabular model.

W Element Statement

The general syntax for a lossy (W Element) transmission line
element is:

RLGC File Form

WXX inl <in2 <...inx>> refin outl <out2 <...outx>>
+ refout <RLGCfile = fname> <COORD=0| DESCART| 1| POLAR>
+ N =val L = val

U-Model Form
WXX inl <in2 <...inx>> refin outl <out2 <...outx>>
+ refout <Unmpbdel = mane> N = val L = val

Elements: Transmission Lines

Field Solver Form
WX inl <in2 <...inx>> refin outl <out2 <...outx>>

+ refout <FSnpdel =

mane> N = val L = val

The number of ports on a single transmission line are not limited. You
must provide one input and output port, the ground references, a
model or file reference, a number of conductors, and a length.

Table 4-13 W Element Syntax

Parameter Description

WxXXX Lossy (W Element) transmission line element name. Must start with W,
followed by up to 1023 alphanumeric characters.

inx Signal input node for x transmission line (inl is required).

refin Ground reference for input signal

outx Signal output node for the x transmission line (each input port must have
a corresponding output port).

refout Ground reference for output signal.

N Number of conductors (excluding the reference conductor).

L Physical length of the transmission line, in units of meters.

RLGCfile = fname

File name reference, for the file containing the RLGC information for the
transmission lines (for syntax, see Chapter 6, “Using Transmission
Lines”, in the HSPICE Elements and Device Models Manual).

COORD

Invokes the polar field solver only if COORD=1 or COORD=POLAR.

ORIGIN

Should be (radius, degree) for the polar field solver.

Umodel = mname

U-model lossy transmission-line model reference name. A lossy
transmission line model, used to represent the characteristics of the W-
element transmission line.

FSmodel = mname

Internal field solver model name. References the PETL internal field
solver, as the source of the transmission-line characteristics (for syntax,
see Chapter 6, “Using Transmission Lines”, in the HSPICE Elements and
Device Models Manual).

Elements: Transmission Lines

4-30

EXAMPLE:

The W1 lossy transmission line connects the in node to the out node:
WL in gnd out gnd RLCCfile = cable.rlgc N=1L =5
» Both signal references are grounded.

« The RLGC file is named cable.rlgc.
* The transmission line is 5 meters long.
The Wcable element is a two-conductor lossy transmission line:

Wable inl in2 gnd outl out2 gnd Unodel = unbd_1 N = 2
+ L =10

e inlandin2input nodes connect to the outl and out2 output node.
» Both signal references are grounded.

« umod_1 references the U-model.

* The transmission line is 10 meters long.

The Wnetl element is a five-conductor lossy transmission line:

Wetl ili2i3i4i5 gnd ol gnd o3 gnd o5 gnd
+ FSnodel = boardl N =5 L = 1m

« Theil,i2,i3,i4 and i5 input nodes connect to the o0l, 03, and 05
output nodes.

* The i5 input and three outputs (01, 03, and 05) are all grounded.
» boardl references the Field Solver model.
e The transmission line is 1 millimeter long.

You can specify parameters in the W-element card in any order. You
can specify the number of signal conductors, N, after the node list.
You can also mix nodes and parameters in the W-element card.

You can specify only one of the RLGCfile,FSmodel, or Umodel
models, in a single W-element card.

Elements: Transmission Lines
4-31

Figure 4-1 shows node numbering for the element syntax.

Figure 4-1 Terminal Node Numbering for W Element

N+1 conductor line

' i2]1
A al RoO.LO.CO.CO_ | el s
1'1 E],Z [v1]2 Signal [v2]2 ﬂ22.2
11 E]»N [VIIN conductors [V2IN ‘ENZ.N

.1, M Reference conductor | _ >

Example 2: Coaxial Line

*PETL Exanpl e: Coaxial |ine

. OPTI ON PROBE POST

VI MPULSE i n1 gnd AC=1v PULSE 4. 82v Ov 5ns V+0. 5ns 0. 5ns 25ns
*Wel enent VWM inl gnd outl gnd FSMODEL=coax N=1, L=1

R1 outl gnd 50

* [[Material List]]
. MATERI AL diel _1 D ELECTRI C ER=4
. MATERI AL copper METAL CONDUCTI VI TY=57. 6nmeg

* [[Shape List]]
. SHAPE circle_ 1 ClI RCLE RADI US=0. 5m

* [[Layer Stack]]
. LAYERSTACK coaxi al LAYER=(diel 1 11m $ only one

* [[Field solver option]]
. FSOPTI ONS nyQpt pri nt dat a=yes conput er s=yes conput egd=yes
conmput ego=yes

* [[Field solver Mdel]]

. MODEL coax W MODELTYPE=FI ELDSCLVER FSOPTI ONS=nmy Opt
COORD=pol ar

+ LAYERSTACK=coaxi al , RLGCFI LE=coax.rl gc

+ CONDUCTOR = (SHAPE=circle_1, MATERI AL=copper, ORI d N=(0,

0))

Elements: Transmission Lines

4-32

. TRAN 0. 5n 100n
. PROBE v(inl) v(outl)
. END

Example: Shield Twin-Lead Lines

*PETL Exanple: Shield twin-lead |ines

. OPTI ON PROBE POST

VI MPULSE i nl gnd AC=1v PULSE 4.82v 0Ov 5ns
+0. 5ns 0. 5ns 25ns

*W el enment

WL inl in2 O outl out2 0 FSMODEL=twi n, N=2, L=1
R1 outl gnd 50

R2 out2 gnd 50

R3 in2 gnd 50

* [[Material List]]
. MATERI AL diel _1 D ELECTRI C ER=4
. MATERI AL copper METAL CONDUCTI VI TY=57. 6nmeg

* [[Shape List]]
. SHAPE circle_ 1 ClI RCLE RADI US=0. 5m

* [[Layer Stack]]
. LAYERSTACK coaxi al LAYER=(diel 1 11m) $ only one

* [[Field solver option]]
. FSOPTI ONS nyOpt pri ntdat a=yes conput er s=yes conput egd=yes
+ conput ego=yes

* [[Field solver Mdel]]

. MODEL twi n W MODELTYPE=FI ELDSCLVER FSOPTI ONS=my Opt
COORD=pol ar LAYERSTACK=coaxi al, RLGCFILE=twi n.rl gc
CONDUCTOR = (SHAPE=circle_1, MATERI AL=copper,

ORI G N=(4.5m 0)) CONDUCTOR = (SHAPE=circle_1,
MATERI AL=copper, ORI A N=(4.5m 180))

+ + + +

. TRAN 0. 5n 100n
. PROBE v(inl) v(outl) v(out?2)
. END

Elements: Transmission Lines
4-33

T Element Statement

The general syntax for a lossless (T Element) transmission line

element is:
Txxx in refin out refout Z0 = val TD = val <L = val >
+ <IC=vl il v2i2>
Txxx in refin out refout Z0 = val F = val <NL = val >
+ <IC=vl,il v2,i2>
U-Model Form
Txxx in refin out refout manme L = val
Only one input and output port is allowed.
Table 4-14 T Element Syntax
TXXX Lossless transmission line element name. Must begin with T, followed by
up to 1023 alphanumeric characters.
in Signal input node.
refin Ground reference for the input signal.
out Signal output node.
refout Ground reference for the output signal.
Z0 Characteristic impedance of the transmission line.
TD Signal delay from a transmission line, in seconds per meter.
L Physical length of the transmission line, in units of meters. Default = 1.

IC =v1,i1,v2,i2 |Initial conditions of the transmission line. Specify the voltage on the input
port (v1), current into the input port (i 1), voltage on the output port (v2),
and the current into the output port (i 2).

F Frequency at which the transmission line has the electrical length
specified in NL.

NL Normalized electrical length of the transmission line (at the frequency
specified in the F parameter), in units of wavelengths per line length.
Default = 0.25, which is a quarter-wavelength.

Elements: Transmission Lines
4-34

Table 4-14 T Element Syntax (Continued)

mname

U-model reference name. A lossy transmission line model, representing
the characteristics of the lossless transmission line.

EXAMPLE:

The T1 transmission line connects the in node to the out node:

T1 in gnd out gnd Z0 =50 TD=5nL =5

» Both signal references are grounded.

* Impedance is 50 ohms.

* The transmission delay is 5 nanoseconds per meter.

* The transmission line is 5 meters long.

The Tcable transmission line connects the inl1 node to the outl node:
Tcable inl gnd outl gnd Z0 = 100 F = 100k NL =1

» Both signal references are grounded.
* Impedance is 100 ohms.
 The normalized electrical length is 1 wavelength at 100 kHz.

The Tnetl transmission line connects the driver node to the output
node:

Tnetl driver gnd output gnd Unbdell L = 1m

» Both signal references are grounded.
« Umodell references the U-model.

e The transmission line is 1 millimeter long.

Elements: Transmission Lines
4-35

U Element Statement

General syntax for a lossy (U Element) transmission line element is:

UXxx inl <in2 <...in5>> refin outl <out2 <...outb>>
+ refout mane L = val <LUWPS = val >

In this syntax, the number of ports on a single transmission line is
limited to five in and five out. One input and output port, the ground
references, a model reference, and a length are all required.

Table 4-15 U Element Syntax

Parameter |Description

UxXXX Lossy (U Element) transmission line element name. Must begin with U,
followed by up to 1023 alphanumeric characters.

inx Signal input node for the x™ transmission line (inl is required).

refin Ground reference for the input signal.

outx Signal output node for the x transmission line (each input port must have a
corresponding output port).

refout Ground reference for the output signal.

mname Model reference name for the U-model lossy transmission-line.

L Physical length of the transmission line, in units of meters.

LUMPS Number of lumped-parameter sections used to simulate the element.

EXAMPLE:

The U1 transmission line connects the in node to the out node:
Ul in gnd out gnd unodel RG8 L =5

» Both signal references are grounded.

 umodel _RG58 references the U-model.

* The transmission line is 5 meters long.

Elements: Transmission Lines
4-36

The Ucable transmission line connects the inl and in2 input nodes
to the outl and out2 output nodes:

Ucable inl in2 gnd outl out2 gnd twstpr L = 10
Both signal references are grounded.

twistpr references the U-model.

The transmission line is 10 meters long.

The Unetl element is a five-conductor lossy transmission line:

Unetlili2i3i4i5gndolgndo3gndo5gndUnpdellLl = 1m

Theil,i2, i3, i4, and i5 input nodes connect to the 01, 03, and 05
output nodes.

The i5 input, and the three outputs (01, 03, and 05) are all
grounded.

Umodell references the U-model.

The transmission line is 1 millimeter long.

Frequency-Dependent Multi-Terminal (S) Element

When used with the generic frequency-domain model (MODEL SP),
an S (scattering) element is a convenient way to describe a multi-
terminal network.

This element uses the following parameters to define a frequency-
dependent, multi-terminal network:

S (scattering)
Y (admittance)
Z (impedance)

Elements: Transmission Lines
4-37

You can use an S Element in the following types of analyses:

« DC
e« AC
 Transient

 Small Signal

For a description of the S Parameter and .sp analysis, see Chapter
6 of the HSPICE Elements and Device Models Manual.

SYNTAX:

In HSPICE, the syntax of the S Element is:

Sxxx ndl nd2 ... ndN nd_ref <MNAME=Snhpdel nane>

+ [FQMODEL=sp_nodel nanme | TSTONEFI LE=fi | enane |

+ CI TIFI LE=fil enanme] <TYPE=[s | y]> <Zo=val | vector_val ue>
+ <Zof =ref nodel > <FBASE=base f equency>

+ <FMAX=maxi mum frequency>

+ <PRECFAC=val > <DELAYHANDLE=ON| OFF> <DELAYFQ=val >

You can set all optional parameters, except MNAME, in both the S
element and the S model statement. Parameters in element
statements have higher priorities. You must specify either the
FQMODEL, TSTONEFILE, or CITIFILE parameter in either the S
model or the S element statement.

Table 4-16 S Element Syntax

Parameter Description

ndl nd2 ... ndN N signal nodes (see Figure 4-2 on page 4-42). Required fields;
you must specify these parameters first. The other parameters
are optional, and you can specify them in any order.

nd_ref or NdR Reference node.
MNAME S model name.
FOMODEL Frequency behavior of S,Y, or Z parameters. .MODEL statement

of sp type defines the frequency-dependent matrices array.

Elements: Transmission Lines
4-38

Table 4-16 S Element Syntax (Continued)

Parameter Description

Zo Characteristic impedance value, for the reference line
(frequency-independent). For multiple terminals (N>1), HSPICE
assumes that the characteristic impedance matrix of the
reference lines is diagonal, and that you set diagonal values to
Zo. To specify general types of reference lines, use Zof. The

default value is 50 Q.

Zof Name of the frequency-varying model, which defines the
frequency behavior of the reference system. If you define both Zo
and Zof , then Zof has precedence.

TYPE Parameter type:

» S (scattering), the default
* Y (admittance)
e Z (impedance)

FBASE Base frequency to use for transient analysis. This value becomes
the base frequency point for Inverse Fourier Transformation.

» If you do not set this value, the base frequency is a reciprocal
value of the transient period.

» If you set a frequency that is smaller than the reciprocal value
of the transient, then transient analysis performs circular
convolution, and uses the reciprocal value of FBASE as its
base period.

FMAX Maximum frequency to use for transient analysis. Used as the
maximum frequency point for Inverse Fourier Transformation.

IDC Terminal bias current at DC.

If you set this value, then the element acts as a current source at
DC, instead of using the network parameter matrix.

VDC Terminal bias voltage at DC.

If you set this value, then the element acts as a voltage source at
DC, instead of using the network parameter matrix.

s_model_name Name of .MODEL with S keyword.

Elements: Transmission Lines
4-39

The S model syntax is:

. MODEL Snodel nanme S

N=di nmensi on

[FQVODEL=sp_nodel nane | TSTONEFI LE=fi |l enane |

CI TI FI LE=fi | enane]

<TYPE=[s | y] > <Zo=[val ue | vector_val ue] > <Zof =ref _nodel >
<FBASE=base_ frequency> <FMAX=naxi mum frequency>
<PRECFAC=val > <DELAYHANDLE=ON| OFF> <DELAYFQ=val >

Table 4-17 S Model Syntax

+ 4+ + + + +

Parameter Description

FOQMODEL Frequency behavior of the S,Y, or Z parameters. .MODEL statement of
sp type, which defines the frequency-dependent matrices array.

TSTONEFILE Name of the touch stone file. This file name must use the following file
extension syntax:

filename.[s|y|z]#

CITIFILE Name of the citi file.

TYPE One of the following parameter types:

e S (scattering), the default
e Y (admittance)
« Z (impedance)

Zo Characteristic impedance value for the reference line (frequency-
independent). For multiple terminals (N>1), HSPICE that the
characteristic impedance matrix of the reference lines is diagonal, and
that you set diagonal values to Zo. To specify more general types of

reference lines, use Zof. Default=50 Q.

Zof Name of the frequency-varying model, which defines the frequency
behavior of the reference system. If you define both Zo and Zof, then Zof
has precedence.

FBASE Base frequency to use for transient analysis. This value becomes the
base frequency point for Inverse Fourier Transformation.

« If you do not set this value, the base frequency is a reciprocal value of
the transient period.

« If you set a frequency that is smaller than the reciprocal value of the
transient, then transient analysis performs circular convolution, and
uses the reciprocal value of FBASE as its base period.

Elements: Transmission Lines
4-40

Table 4-17 S Model Syntax (Continued)

Parameter

Description

FMAX

Maximum frequency for transient analysis. Used as the maximum
frequency point for Inverse Fourier Transform.

LOWPASS

Specifies low-frequency extrapolation:

0: Use zero in Y dimension (open circuit).

1: Use lowest frequency (default).

2: Use linear extrapolation, with the lowest two points.
This option overrides EXTRAPOLATION in .model SP.

HIGHPASS

Specifies high-frequency extrapolation:

0: Use zero in Y dimension (open circuit).

1: Use highest frequency.

2: Use linear extrapolation, with the highest two points.
3: Apply window function (default).

This option overrides EXTRAPOLATION in ,model SP.

DELAYHANDLE

Delay frequency for transmission line type parameters. Default=OFF.

1 (default) activates the delay handler. See Group Delay Handler in Time
Domain Analysis on page 4-42

0 deactivates the delay handler.

You must set the delay handler, if the delay of the model is longer than
the base period specified in the FBASE parameter.

If you set DELAYHANDLE=OFF but DELAYFQ is not zero, HSPICE
simulates the S element in delay mode.

DELAYFQ

Delay frequency for transmission line type parameters. For best
performance, set this to the inverse of the delay time. Default=FMAX.

PRECFAC

Preconditioning factor, to avoid a singularity (infinite admittance matrix).
See Pre-Conditioning S Parameters on page 4-43. Default=0.75.

Elements: Transmission Lines
4-41

Figure 4-2 Terminal Node Notation

[

o— —oO
vinc]1 N+1 terminal system [VincIN
— [i]1 [N €«
[vrefl]1—> <— [vref][N
«— —>

ndl O—— ————o ndN
(+) V1 (+) IVIN
) l ndR

(reference node)

Frequency Table Model

The Frequency Table Model is a generic model that you can use to
describe frequency-varying behavior. Currently, the S element

and .sp use this model. For a description of this model, see
“Frequency Table Model” in Chapter 6, Linear N-Ports/Transmission
Lines, in the HSPICE Elements and Device Models Manual.

Group Delay Handler in Time Domain Analysis

The S element accepts a constant group delay matrix in time-domain
analysis. You can also express a weak dependence of the delay
matrix on the frequency, as a combination of the constant delay
matrix and the phase shift value at each frequency point.

To activate or deactivate this delay handler, specify the
<DELAYHANDLE=0|1> keyword in the S model statement.

Elements: Transmission Lines

4-42

After time domain analysis obtains the group delay matrix, the
following equation eliminates the delay amount from the frequency
domain system-transfer function:
jooYmn
ymn(m) = ymn((u)xe (2)

The convolution process then uses the following equation to
calculate the delay:

1 ! [] [] Y
ety = O'kacey Y'k2@)y = Y'knee) X Vae—vk1) Vai—vk2y = YN@—vkN)) (3

Pre-Conditioning S Parameters

Certain S parameters, such as series inductor (2-port), show a
singularity when converting S to Y parameters. To avoid this
singularity, the S element adds kR Series resistance, to pre-

condition S matrices:

S’ = [KI+(2—=K)S][(2 + k)l —kS]
* R,efis the reference impedance vector.

* ks the pre-conditioning factor.

To compensate for this modification, the S element adds a negative
resistor (—kRef) to the modified nodal analysis (NMA) matrix, in
actual circuit compensation. To specify this pre-conditioning factor,
use the <PREFAC=val> keyword in the S model statement. The
default pre-conditioning factor is 0.75.

Elements: Transmission Lines
4-43

Figure 4-3 Pre-Conditioning S Parameters

| preconditioning | kR |
S'ﬁ
‘ StoY
I FkRrer I Y’ h e Y
l l NMA stamp :
g |

Buffers
The general syntax of an element card for input/output buffers is:

bnane node_1 node 2 ... node_N keyword 1 = value 1 ...
+ [keyword_M = val ue_M

Table 4-18 B Element Syntax

Parameter Description

bname Buffer name, and starts with the letter B.

node_1 node 2 ... List of input/output buffer external nodes. The number of nodes

node_N and their meaning are specific to different buffer types.

keyword_i = value _i Assigns a value of value_i to the keyword_i keyword. Specify
optional keywords in [brackets].

For information about the keywords, see Chapter 7, “Using IBIS
Models”, in the HSPICE Elements and Device Models Manual.

Elements: Buffers
4-44

EXAMPLE:

Bl nd_pc nd_gc nd_in nd_out_of in
+ buffer =1

+ file = "test.ibs’

+ nodel = "IBIS IN

» This example represents an input buffer named B1.

* The four terminals are named nd_pc, nd_gc, nd_in and
nd_out_of _in.
 The IBIS model named IBIS_IN is located in the IBIS file named
test.ibs.
Note: HSPICE connects the nd_pc and nd_gc nodes to the voltage
sources. Do not manually connect these nodes to voltage
sources.

For more examples, see Chapter 7, “Using IBIS Models”, in the
HSPICE Elements and Device Models Manual.

Elements: Buffers
4-45

Elements: Buffers
4-46

Sources and Stimuli

This chapter describes element and model statements for
independent sources, dependent sources, analog-to-digital

elements, and digital-to-analog elements. It also explains each type

of element and model statement. Explicit formulas and examples

show how various combinations of parameters affect the simulation.

The chapter explains the following topics:

Independent Source Elements

Independent Source Functions

Voltage and Current Controlled Elements
Voltage-Dependent Voltage Sources — E Elements
Current-Dependent Current Sources — F Elements
Voltage-Dependent Current Sources — G Elements
Current-Dependent Voltage Sources — H Elements
Digital and Mixed Mode Stimuli

Replacing Sources With Digital Inputs

Specifying a Digital Vector File

5-1

Independent Source Elements

Use independent source element statements to specify DC, AC,
transient, and mixed independent voltage and current sources.
Some types of analysis use the associated analysis sources. For
example, in a DC analysis, if you specify both DC and AC sources in
one independent source element statement, HSPICE removes the
AC source from the circuit, for the DC analysis. If you specify an
independent source for an AC, transient, and DC analysis, HSPICE
removes transient sources, calculates the operating point, and
removes DC sources, for the AC analysis. Initial transient values
always override the DC value.

Source Element Conventions

You do not need to ground voltage sources. HSPICE assumes that
positive current flows from the positive node, through the source, to
the negative node. A positive current source forces current to flow
out of the N+ node, through the source, and into the N- node.

You can use parameters as values in independent sources. Do not
use any of the reserved keywords to identify these parameters:

AC AC| AM DC EXP PE PL
PU PULSE PWL R RD SFFM SIN

Independent Source Element
The general syntax for an independent source is:
VXXX n+ n- <<DC=> dcval > <tranfun> <AC=acnag> <acphase>>

lyyy n+t n- <<DC=> dcval > <tranfun> <AC=acnag> <acphase>>
<Meval >

Sources and Stimuli: Independent Source Elements

5-2

Table 5-1

Independent Source Element Syntax

Parameter | Description

VXXX Independent voltage source element name. Must begin with V, followed
by up to 1023 alphanumeric characters.

lyyy Independent current source element name. Must begin with I, followed
by up to 1023 alphanumeric characters.

n+ Positive node.

n- Negative node.

DC=dcval DC source keyword and value, in volts. The tranfun value at time zero
overrides the DC value. Default=0.0.

tranfun Transient source function (one or more of: AM, DC, EXP, PE, PL, PU,
PULSE, PWL, SFFM, SIN). The functions specify the characteristics of a
time-varying source. See the individual functions, for syntax.

AC AC source keyword, for use in AC small-signal analysis.

acmag Magnitude (RMS) of the AC source, in volts.

acphase Phase of the AC source, in degrees. Default=0.0.

M Multiplier, to simulate multiple parallel current sources. HSPICE
multiplies source current by M. Default=1.0.

EXAMPLE 1:
VX 10 5V

 The VX voltage source has a 5 volt DC bias.

« The positive terminal connects to node 1.

* The negative terminal is grounded.

Sources and Stimuli: Independent Source Elements

5-3

EXAMPLE 2:

VB 2 0 DC=VCC

The VCC parameter specifies the DC bias for the VB voltage
source.

The positive terminal connects to node 2.

The negative terminal is grounded.

EXAMPLE 3:

VH 3 6 DC=2 AC-=1, 90

The VH voltage source has a 2-volt DC bias, and a 1-volt RMS
AC bias, with 90 degree phase offset.

The positive terminal connects to node 3.

The negative terminal connects to node 6.

EXAMPLE 4:

IG8 7 PL(1MA 0S 5MA 25Mb)

The piecewise-linear relationship defines the time-varying
response for the IG current source, which is 1 milliamp at time=0,
and 5 milliamps at 25 milliseconds.

The positive terminal connects to node 8.

The negative terminal connects to node 7.

EXAMPLE 5:

VCC in out VCC PW. 0 0 10NS VCC 15NS VCC 20NS 0

The VCC parameter specifies the DC bias for the VCC voltage
source.

The piecewise-linear relationship defines the time-varying
response for the VCC voltage source, which is 0 volts at time=0,
VCC from 10 to 15 nanoseconds, and back to 0 volts at 20
nanoseconds.

Sources and Stimuli: Independent Source Elements

5-4

The positive terminal connects to the in node.
The negative terminal connects to the out node.

HSPICE determines the operating point for this source, without
the DC value (the result is 0 volts).

EXAMPLE 6:

VIN 13 2 0.001 AC1 SIN (0 1 1MEQ

The VIN voltage source has a 0.001-volt DC bias, and a 1-volt
RMS AC bias.

The sinusoidal time-varying response ranges from 0 to 1 volts,
with a frequency of 1 megahertz.

The positive terminal connects to node 13.
The negative terminal connects to node 2.

EXAMPLE 7:

| SRC 23 21 AC 0.333 45.0 SFFM (0 1 10K 5 1K)

The ISRC current source has a 1/3-amp RMS AC response, with
a 45-degree phase offset.

The frequency-modulated, time-varying response ranges from 0
to 1 volts, with a carrier frequency of 10 kHz, a signal frequency
of 1 kHz, and a modulation index of 5.

The positive terminal connects to node 23.
The negative terminal connects to node 21.

EXAMPLE 8:

VMEAS 12 9The VMEAS vol t age source has a 0-volt DC bi as.

The positive terminal connects to node 12.

The negative terminal connects to node 9.

Sources and Stimuli: Independent Source Elements
5-5

DC Sources

For a DC source, you can specify the DC current or voltage in
different ways:

vVl 1l 0 DC=5V
Vli1lO0 5V
1 1 0 DC=5mA
110 5,m

» The first two examples specify a DC voltage source of 5V,
connected between node 1 and ground.

» The third and fourth examples specify a 5 mA DC current source,
between node 1 and ground.

The direction of current in both sources is from node 1 to ground.

AC Sources

AC current and voltage sources are impulse functions, used for an
AC analysis. To specify the magnitude and phase of the impulse, use
the AC keyword.

vVl 1 0 AC=10V, 90
VIN1 0O AC 10V 90

The preceding two examples specify an AC voltage source, with a
magnitude of 10 V and a phase of 90 degrees. To specify the
frequency sweep range of the AC analysis, use the .AC analysis
statement. The AC or frequency domain analysis provides the
impulse response of the circuit.

Sources and Stimuli: Independent Source Elements

5-6

Transient Sources

For transient analysis, you can specify the source as a function of
time. The following functions are available:

* pulse

* exponential

e damped sinusoidal

» single-frequency FM

* piecewise linear

Mixed Sources

Mixed sources specify source values for more than one type of
analysis. For example, you can specify a DC source, an AC source,
and a transient source, all of which connect to the same nodes. In
this case, when you run specific analyses, HSPICE selects the
appropriate DC, AC, or transient source. The exception is the zero-
time value of a transient source, which over-rides the DC value; it is
selected for operating-point calculation for all analyses.

EXAMPLE:

VIN 13 2 0.5 AC 1 SIN (0 1 1MEG

The preceding example specifies:

« DC sourceof 0.5V

e ACsourceoflV

« Transient damped sinusoidal source

Each source connects between nodes 13 and 2.

For DC analysis, the program uses zero source value, because the
sinusoidal source is zero at time zero.

Sources and Stimuli: Independent Source Elements
5-7

Independent Source Functions

HSPICE uses the following types of independent source functions:
* Pulse (PULSE function)

« Sinusoidal (SIN function)

« Exponential (EXP function)

* Piecewise linear (PWL function)

» Single-frequency FM (SFFM function)

» Single-frequency AM (AM function)

HSPICE also provides a data-driven version of PWL. If you use the
data-driven PWL, you can reuse the results of an experiment or of a
previous simulation, as one or more input sources for a transient
simulation.

If you use the independent sources supplied with HSPICE, you can
specify several useful analog and digital test vectors, for steady
state, time domain, or frequency domain analysis. For example, in
the time domain, you can specify both current and voltage transient
waveforms, as exponential, sinusoidal, piecewise linear, AM, or
single-sided FM functions.

Pulse Source Function

HSPICE provides a trapezoidal pulse source function, which starts
with an initial delay from the beginning of the transient simulation
interval, to an onset ramp. During the onset ramp, the voltage or
current changes linearly, from its initial value, to the pulse plateau
value. After the pulse plateau, the voltage or current moves linearly,
along a recovery ramp, back to its initial value. The entire pulse
repeats, with a period named per, from onset to onset.

Sources and Stimuli: Independent Source Functions

5-8

The syntax for a pulse source, in an independent voltage or current
source, is:

VXXX n+ n- PWLSE> <(>vl v2 <td <tr <tf <pw
+ <per>>>>> <) >

I xxx n+ n- PU<LSE> <(>vl1l v2 <td <tr <tf <pw
+ <per>>>>> <) >

Table 5-2 Pulse Source Syntax

Parameter | Description

VXXX, IXXX Independent voltage source, which exhibits the pulse response.

PULSE Keyword for a pulsed time-varying source. The short form is PU.

vl Initial value of the voltage or current, before the pulse onset (units of volts or
amps).

v2 Pulse plateau value (units of volts or amps).

td Delay (propagation) time in seconds, from the beginning of the transient interval,
to the first onset ramp. Default=0.0; HSPICE sets negative values to zero.

tr Duration of the onset ramp (in seconds), from the initial value, to the pulse
plateau value (reverse transit time). Default=TSTEP.

tf Duration of the recovery ramp (in seconds), from the pulse plateau, back to the
initial value (forward transit time). Default=TSTEP.

pw Pulse width (the width of the plateau portion of the pulse), in seconds.
Default=TSTOP.

per Pulse repetition period, in seconds. Default=TSTOP.

Table 5-3 Time-Value Relationship for a PULSE Source

Time Value
0 vl
td vl
td + tr v2
td + tr + pw v2
td +tr + pw + tf vl
tstop vl

Sources and Stimuli; Independent Source Functions
5-9

Linear interpolation determines the intermediate points.
Note: TSTEP is the printing increment, and TSTOP is the final time.

EXAMPLE 1:

The following example shows the pulse source, connected between
node 3 and node 0. In the pulse:

« The output high voltage is 1 V.
« The output low voltage is -1 V.
« Thedelayis 2 ns.
e The rise and fall time are each 2 ns.
* The high pulse width is 50 ns.
 The period is 100 ns.
VIN 3 0 PULSE (-1 1 2NS 2NS 2NS 50NS 100NS)

EXAMPLE 2:

The following example is a pulse source, which connects between
node 99 and node 0. The syntax shows parameter values for all
specifications.

V199 O PUIlv hv tdlay tris tfall tpwtper

EXAMPLE 3:

The following example shows an entire netlist, which contains a
PULSE voltage source. In the source:

« The initial voltage is 1 volt.

» The pulse voltage is 2 volts.

« The delay time, rise time, and fall time are each 5 nanoseconds.
» The pulse width is 20 nanoseconds.

» The pulse period is 50 nanoseconds.

Sources and Stimuli: Independent Source Functions

5-10

File pul se.sp test of pulse

.option post

.tran .5ns 75ns

vpulse 1 0 pulse(vl v2 td tr tf pw per)

ri 101

. param vl=1v v2=2v td=5ns tr=5ns tf=5ns pw=20ns
+ per=50ns

.end

Figure 5-1 shows the result of simulating this netlist, in HSPICE.

Figure 5-1 Pulse Source Function

FILE PULSE.SP TEST OF PULSE
4-APRIT 16:50: 7
3.0 = PULSE TRO:
- o
2 750 = A
2 50 = =
2 250 = -
v - -
y = £
% - E
! : :
\ - =
750 0M = E
500 0M = =
250 0M = -
O i\ | | | ‘,\,\ \,\,‘ [| | ‘ LI \,‘,\ Lo | ‘ | \,\\‘,\,\ \,\,‘ | Ji
: 100N 20 0N 30 ON 40 .ON 50 ON 60 ON 70 ON
0 TINE (1TN) 75 ON

Sources and Stimuli; Independent Source Functions
5-11

Sinusoidal Source Function

HSPICE provides a damped sinusoidal source, which is the product
of a dying exponential with a sine wave. To apply this waveform, you
must specify:

Sine wave frequency
Exponential decay constant
Beginning phase

Beginning time of the waveform

SYNTAX:

The syntax for a sinusoidal source in an independent voltage or
current source is:

VXXX n+ n- SIN <(> vo va <freq <td <q <] >>>> <)>

I xxx n+ n- SIN <(> vo va <freq <td <q <] >>>> <)>

Table 5-4 Sinusoidal Source Syntax

Parameter | Description

VXXX, IXXX Independent voltage source that exhibits the sinusoidal response.

SIN Keyword for a sinusoidal time-varying source.

VO Voltage or current offset, in volts or amps.

va Voltage or current RMS amplitude, in volts or amps.

freq Source frequency in Hz. Default=1/TSTOP.

td Time (propagation) delay before beginning the sinusoidal variation, in seconds.
Default=0.0. Response is 0 volts or amps, until HSPICE reaches the delay value,
even with a non-zero DC voltage.

q Damping factor, in units of 1/seconds. Default=0.0.

Phase delay, in units of degrees. Default=0.0.

Sources and Stimuli: Independent Source Functions

5-12

The following table of expressions defines the waveform shape:

Time Value
r2 11 b
O to td vo+vaE13IND 360 O

vo +va [Exp[—(Time —td) [B] O

SINEZ T E[freq - (time —td) + iE
td to tstop O 360 O]

In these expressions, TSTOP is the final time.

EXAMPLE:
VIN 3 0 SIN (0 1 100MEG 1INS 1el0)

This damped sinusoidal source connects between nodes 3 and 0. In
this waveform:

« Peakvalueis1V.
 Offsetis 0 V.

* Frequency is 100 MHz.

« Time delayis 1 ns.

« Damping factor is 1e10.
 Phase delay is zero degrees.

See Figure 5-2 on page 5-14 for a plot of the source output.

Sources and Stimuli; Independent Source Functions
5-13

Figure 5-2 Sinusoidal Source Function

xbLLE: SIN.SP SINUSOLDAL SOURCE
4-APRI91 15132137

SIN. TRO:

1
A—————

ol “\\‘\‘J L\“\ L\“\J \“\J

no
=
=
=
=

[ep] =
= =4
= =4
= =4
= =
[‘ [| ‘ | | | ‘ | [

‘ | | | ‘ | | | ‘ | | | ‘ | | |
100N 200 300 40 0 50 ON
N TIMF (1T TN) R AN
*File: SIN SP THE SI NUSO DAL VWAVEFORM
*<decay envel ope>
. OPTI ON PCST
. PARAM V0=0 VA=1 FREQ=100MEG DELAY=2N THETA=5E7 PHASE=0
V10 SIN (VO VA FREQ DELAY THETA PHASE)

R101
. TRAN . O5N 50N
. END

Table 5-5 SIN Voltage Source

Parameter Value

initial voltage 0 volts

pulse voltage 1 volt

delay time 2 nanoseconds

frequency 100 MHz

damping factor 50 MHz

Sources and Stimuli: Independent Source Functions
5-14

Exponential Source Function

The general syntax for an exponential source, in an independent
voltage or current source, is:

Vxxx n+ n- EXP <(> vl v2 <tdl <tl <td2 <t2>>>> <)>

I xxx n+ n- EXP <(> vl v2 <tdl <tl <td2 <t2>>>> <)>

Table 5-6 Exponential Source Syntax

Parameter | Description

VXXX, IXXX Independent voltage source, exhibiting an exponential response.
EXP Keyword for an exponential time-varying source.

vl Initial value of voltage or current, in volts or amps.

v2 Pulsed value of voltage or current, in volts or amps.

td1 Rise delay time, in seconds. Default=0.0.

td2 Fall delay time, in seconds. Default=td1+TSTEP.

t1 Rise time constant, in seconds. Default=TSTEP.

t2 Fall time constant, in seconds. Default=TSTEP.

TSTEP is the printing increment, and TSTOP is the final time.
The following table of expressions defines the waveform shape:

Time Value

Ototdl vi1

tdl totd2 v1+ (V2 —Vl) E[l _Exp% T|me—td1%:|
1

td2 to tstop v1+(v2-vl) E[l - Exp%_(Tlme _tdl)B} N
11

(vli-v2) E[l —exp %—(Timi _tdz)EJ
2

Sources and Stimuli; Independent Source Functions
5-15

EXAMPLE:
VIN 3 0 EXP (-4 -1 2NS 30NS 60NS 40NS)

The above example describes an exponential transient source,
which connects between nodes 3 and 0. In this source:

Initial t=0 voltage is -4 V.
« Final voltage is -1 V.

« Waveform rises exponentially, from -4 V to -1 V, with a time
constant of 30 ns.

* At 60 ns, the waveform starts dropping to -4 V again, with a time
constant of 40 ns.

Figure 5-3 Exponential Source Function

xFILE: EXP_.SP EXPONENTIAL INDEPENDANT SOURCE
TD1 Y-APRYT1 15:36:37
0. |« o o A—”’/TDZ o - FXP TRO:
z ‘ ‘ I
— ,Ai
S500.0M =
1.0 N -
\/ — ' .
3 - V2=-1v -
L 1 .50 S -
T : :
L -2 .0 . f
[- ‘ : -
.50] N - TAUZ -
3.0 | o
3.50 f
74 O; 1 ‘ I - - - - ‘ 1 K - - ‘ I o B - -
: 500N 100.0N 150.0N 200.0N
0 TIME (ITN) P00 ON

Sources and Stimuli: Independent Source Functions
5-16

*FI LE: EXP. SP THE EXPONENTI AL WAVEFORM

. OPTI ON POST

. PARAM V1=-4 V2=-1 TD1=5N TAU1=30N TAU2=40N TD2=80N
V10 EXP (V1 V2 TD1 TAUl TD2 TAUW2)

R101

. TRAN . O5SN 200N

. END

This example shows an entire netlist, which contains an exp voltage
source. In this source:

« Initial t=0 voltage is -4 V.
* Final voltage is -1 V.

« Waveform rises exponentially, from -4 V to -1 V, with a time
constant of 30 ns.

* At 80 ns, the waveform starts dropping to -4 V again, with a time
constant of 40 ns.

Piecewise Linear (PWL) Source Function

The general syntax for a piecewise linear source, in an independent
voltage or current source, is:

General Form

Vxxx n+ n- PW <(>t1 vl <t2 v2 t3 v3..> <R <=repeat >>
+ <TD=del ay> <)>

I xxx nt n- PAW <(>t1 vl <t2 v2 t3 v3..> <R <=repeat>>
+ <TD=del ay> <)>

MSINC and ASPEC Form

Vxxx n+ n- PL <(> vl tl <v2 t2 v3 t3..> <R <=repeat >>
+ <TD=del ay> <)>

Ixxx nt n- PL <(> vl t1l <v2 t2 v3 t3..> <R <=repeat >>
+ <TD=del ay> <)>

Sources and Stimuli; Independent Source Functions
5-17

Table 5-7 Piecewise Linear Source Syntax

Parameter | Description

VXXX, IXXX Independent voltage source; uses a piecewise linear response.

PWL Keyword for a piecewise linear time-varying source.

vlv2 ...vn | Current or voltage values at the corresponding timepoint.

t1t2 ... tn Timepoint values, where the corresponding current or voltage value is valid.

R=repeat Keyword and time value to specify a repeating function. With no argument,
the source repeats from the beginning of the function. repeat is the time, in
units of seconds, which specifies the start point of the waveform to repeat.
This time needs to be less than the greatest time point, tn.

TD=delay Time, in units of seconds, which specifies the length of time to delay
(propagation delay) the piecewise linear function.

Each pair of values (t1, v1) specifies that the value of the source
Is v1 (in volts or amps), at time t1.

Linear interpolation between the time points determines the
value of the source, at intermediate values of time.

The PL form of the function accommodates ASPEC style
formats, and reverses the order of the time-voltage pairs to
voltage-time pairs.

If you do not specify a time-zero point, HSPICE uses the DC
value of the source, as the time-zero source value.

HSPICE does not force the source to terminate at the TSTOP
value, specified in the . TRAN statement.

If the slope of the piecewise linear function changes below a
specified tolerance, the timestep algorithm might not choose the
specified time points as simulation time points. To obtain a value for
the source voltage or current, HSPICE extrapolates neighboring
values. As a result, the simulated voltage might deviate slightly from
the voltage specified in the PWL list. To force HSPICE to use the
specified values, use the SLOPETOL option, which reduces the
slope change tolerance.

Sources and Stimuli: Independent Source Functions

5-18

R causes the function to repeat. You can specify a value after this R,
to indicate the beginning of the function to repeat. The repeat time
must equal a breakpoint in the function. For example, ift1 =1, t2 =
2,t3 =3, and t4 = 4, then the repeat value can be 1, 2, or 3.

Specify TD=val, to cause a delay at the beginning of the function.
You can use TD with or without the repeat function.

EXAMPLE:

*FI LE: PW.. SP THE REPEATED PI ECEW SE LI NEAR SOURCE
*| LLUSTRATI ON OF THE USE OF THE REPEAT FUNCTI ON “R’
*file pw .sp REPEATED Pl ECEW SE LI NEAR SOURCE

. OPTI ON POST

. TRAN 5N 500N

vVli1l0 PA 60N OV, 120N OV, 130N 5V, 170N 5V, 180N 0V,
+ R ON

RL101

V2 2 0 PL OV 60N, OV 120N, 5V 130N, 5V 170N, 0OV 180N,
+ R 60N

RR 201

. END

This example shows an entire netlist, which contains two piecewise
linear voltage sources. The two sources have the same function:

« Firstisin normal format. The repeat starts at the beginning of the
function.

« Secondis in ASPEC format. The repeat starts at the first
timepoint.

See Figure 5-4 on page 5-20 for the difference in responses.

Sources and Stimuli; Independent Source Functions
5-19

Figure 5-4 Results of Using the Repeat Function

FILE PWL.SP REPEATED PIECEWISE LINEAR SOURCE
4-APRII 16:35:16

y 5.0 PUL TRO:
J -1
L § 0T ‘ I —
f - Repeat R
! 5.0¢ from_tktns Start repeating
I - pont ¢ at this point | -
(TLVL o= (ons) (180ns)
y e PWL.TRO:
) Dop
e) : : . : : — Ai
T Repeat *
5 - from this
. point.
.
| o 1 1 1 ‘ 1
b miniil (1 200. 0N 300 0N 400 ON
0 TIME (1IN 500 ON

Data-Driven Piecewise Linear Source

The general syntax for a data-driven piecewise linear source, in an
independent voltage or current source, is:

Vxxx n+ n- PW (TIME, PV)
I xxx n+ n- PAL (TIME, PV)

. DATA dat anane

TI ME PV

t1l vl

t2 v2

t3 v3

t4 v4

. ENDDATA

. TRAN DATA=dat anam

Sources and Stimuli: Independent Source Functions
5-20

Table 5-8 Data-Driven Piecewise Linear Source Syntax

Parameter | Description

TIME Parameter name for time value, provided in a .DATA statement.

PV Parameter name for amplitude value, provided in a .DATA statement.

You must use this source with a .DATA statement that contains time-
value pairs. For each tn-vn (time-value) pair that you specify in

the .DATA block, the data-driven PWL function outputs a current or
voltage of the specified tn duration and with the specified vn
amplitude.

When you use this source, you can reuse the results of one
simulation, as an input source in another simulation. The transient
analysis must be data-driven.

EXAMPLE:

*DATA DRI VEN PI ECEW SE LI NEAR SOURCE
Vi 10 PA(TIME pvl)
RL101

V2 2 0 PAL(TIME, pv2)
R2 201

. DATA dsrc

TI ME pvl pv2

On 5v Ov

5n Ov b5v

10n Ov b5v

. ENDDATA

. TRAN DATA=dsrc

. END

This example is an entire netlist, containing two data-driven,
piecewise linear voltage sources. The .DATA statement contains the
two sets of values referenced in the pv1l and pv2 sources.

The .TRAN statement references the data name.

Sources and Stimuli; Independent Source Functions
5-21

Single-Frequency FM Source Function

The general syntax for including a single-frequency, frequency-
modulated source in an independent voltage or current source is:

Vxxx n+ n- SFFM <(> vo va <fc <nmdi <fs>>> <)>

| xxx n+ n- SFFM <(> vo va <fc <ndi <fs>>> <)>

Table 5-9 Single-Frequency FM Source Syntax

Parameter Description

VXXX, IXXX Independent voltage source, which exhibits the frequency-modulated
response.

SFFM Keyword for a single-frequency, frequency-modulated, time-varying
source.

VO Output voltage or current offset, in volts or amps.

va Output voltage or current amplitude, in volts or amps.

fc Carrier frequency, in Hz. Default=1/TSTOP.

mdi Modulation index, which determines the magnitude of deviation from the
carrier frequency. Values normally lie between 1 and 10. Default=0.0.

fs Signal frequency, in Hz. Default=1/TSTOP.

The following expression defines the waveform shape:

sourcevalue = vo+va[BIN[2 Oudc [Time +
mdi - SIN(2 Oudc rime)]

EXAMPLE:

*FILE: SFFM SP THE SI NGLE FREQUENCY FM SOURCE
. OPTI ON POST

V10 SFFM (0, 1M 20K 10, 5K)

R101

. TRAN . 0005M . 5M5

. END

Sources and Stimuli: Independent Source Functions
5-22

This example shows an entire netlist, which contains a single-
frequency, frequency-modulated voltage source. In this source.

Figure 5-5

The offset voltage is 0 volts.
The maximum voltage is 1 millivolt.

The carrier frequency is 20 kHz.

The signal is 5 kHz, with a modulation index of 10 (the maximum
wavelength is roughly 10 times as long as the minimum).

Single Frequency FM Source

— 1 O <

600.0M

400 .0M

200.0M

\\\‘\\\‘\\\\\\\mﬂﬂ—:’ﬁ’—t’_—isu‘

xPLLE: SEEM.SP FREQUENCY MODULAIION SOURCE

4-APR9T 15:51:29

- ‘ . o ,‘ - o K -
200.0U
TIME (ITN)

‘ A J
300.0U

! !

L1y

- I
400.0U

SFFM_TRO
15

LL\\“\L\“\\L‘L\\J\J\

500.0U
h00 0U

Amplitude Modulation Source Function

The general syntax for including a single-frequency, frequency-
modulated source in an independent voltage or current source is:

VXXX n+ n- AM< (> sa oc fmfc <td> <)>

I XXX n+ n- AM< (> sa oc fmfc <td> <)>

Sources and Stimuli; Independent Source Functions

5-23

Table 5-10

AM Source Syntax

Parameter | Description

VXXX, IXXX Independent voltage source, which exhibits the amplitude-modulated response.

AM Keyword for an amplitude-modulated, time-varying source.

sa Signal amplitude, in volts or amps. Default=0.0.

fc Carrier frequency, in hertz. Default=0.0.

fm Modulation frequency, in hertz. Default=1/TSTOP.

oc Offset constant, a unitless constant that determines the absolute magnitude of
the modulation. Default=0.0.

td Delay time (propagation delay) before the start of the signal, in seconds.

Default=0.0.

The following expression defines the waveform shape:

sourcevalue = sa{oc+ SIN[2Ot0m {Time —td)]} O

SIN[2 Otdc Time —td)]

EXAMPLE:

. OPTI ON POST
. TRAN . 01M 20M

vi1i0 AM10 1 100 1K 1M
RL101

V220 AM2.5 4 100 1K 1M
RR 201

V330 AM10 1 1K 100 1M
R3301

. END

This example shows an entire netlist, which contains three
amplitude-modulated voltage sources.

Sources and Stimuli: Independent Source Functions

5-24

In the first source:

In the second source, only the amplitude and offset constant

Amplitude is 10.

Offset constant is 1.

Carrier frequency is 1 kHz.
Modulation frequency of 100 Hz.

Delay is 1 millisecond.

differ from the first source:

Amplitude is 2.5.

Offset constant is 4.

Carrier frequency is 1 kHz.
Modulation frequency of 100 Hz.

Delay is 1 millisecond.

The third source exchanges the carrier and modulation
frequencies, compared to the first source:

Amplitude is 10.

Offset constant is 1.

Carrier frequency is 100 Hz.
Modulation frequency of 1 kHz.

Delay is 1 millisecond.

Sources and Stimuli; Independent Source Functions

5-25

Figure 5-6 Amplitude Modulation Plot

xFILE AMSRC.SP AMPLITUDE MODULATION
4-APRYL 16icbicH

E > AMSRC.TRO:
v - .
10.0° -
0 L z Eg
LI 0. = 4
T N - -
10,0 E
- ;
v , e
0L - A
LI 0. - 2
TN -
10,0 -
E > AMSRC.TRO:
/ 10 0= =3
0L : A
LI 0. =
TN -
10.0=
- |
5 OM 10 0M 15 M
0 TIME (LIN) 20 0M

Voltage and Current Controlled Elements

HSPICE provides two voltage-controlled and two current-controlled
elements, known as E, G, H, and F Elements. You can use these
controlled elements to model:

« MOS transistors
* bipolar transistors
e tunnel diodes

e SCRs

Sources and Stimuli: Voltage and Current Controlled Elements
5-26

« analog functions, such as:
- operational amplifiers
- summers
- comparators
- voltage-controlled oscillators
- modulators
- switched capacitor circuits

Depending on whether you used the polynomial or piecewise linear
functions, the controlled elements can be:

» Linear functions of controlling-node voltages.

» Non-linear functions of controlling-node voltages.
« Linear functions of branch currents.

* Non-linear functions of branch currents.

The functions of the E, F, G, and H controlled elements are different.

« The E Element can be:

A voltage-controlled voltage source

- A current-controlled voltage source

- An ideal op-amp.

- An ideal transformer.

- An ideal delay element.

- Apiecewise linear, voltage-controlled, multi-input AND, NAND,

OR, or NOR gate.

Sources and Stimuli: Voltage and Current Controlled Elements
5-27

e The F Element can be:
- A current-controlled current source.
- An ideal delay element.

- Apiecewise linear, current-controlled, multi-input AND, NAND,
OR, or NOR gate.

e The G Element can be:

A voltage-controlled current source.

A current-controlled current source.

A voltage-controlled resistor.

A piecewise linear, voltage-controlled capacitor.

An ideal delay element.

A piecewise linear, multi-input AND, NAND, OR, or NOR gate.
 The H Element can be:

- A current-controlled voltage source.

- An ideal delay element.

- A piecewise linear, current-controlled, multi-input AND, NAND,
OR, or NOR gate.

The next section describes polynomial and piecewise linear
functions. Later sections describe element statements for linear or
non-linear functions.

Sources and Stimuli: Voltage and Current Controlled Elements
5-28

Polynomial Functions

You can use the controlled element statement to define the
controlled output variable (current, resistance, or voltage), as a
polynomial function of one or more voltages or branch currents. You
can select three polynomial equations, using the POLY(NDIM)
parameter in the E, F, G, or H Element statement.

Table 5-11 Polynomial Syntax

Value Description

POLY(1) | One-dimensional equation (function of one controlling variable).

POLY(2) | Two-dimensional equation (function of two controlling variables).

POLY(3) | Three-dimensional equation (function of three controlling variables).

Each polynomial equation includes polynomial coefficient
parameters (PO, P1 ... Pn), which you can set to explicitly define the
equation.

One-Dimensional Function

If the function is one-dimensional (a function of one branch current
or node voltage), the following expression determines the FV
function value:

FV = PO+ (P1[FA)+ (P2 [FA2) + (P3[FA3) + (P4 [FA%) + (P5 [FA®) + ...

Table 5-12 One-Dimensional Syntax

Parameter Description

FvV Controlled voltage or current, from the controlled source.
PO. . .PN Coefficients of a polynomial equation.

FA Controlling branch current, or nodal voltage.

Sources and Stimuli: Voltage and Current Controlled Elements
5-29

Note: If you specify one coefficient in a one-dimensional polynomial,
HSPICE assumes that the coefficient is P1 (PO = 0.0). Use
this as input for linear controlled sources.

The following controlled source statement is a one-dimensional
function. This voltage-controlled voltage source connects to nodes 5
and 0.

E1 5 0 POLY(1) 321 2.5

1. The single-dimension polynomial function parameter, POLY(1),
informs HSPICE that E1 is a function of the difference of one
nodal voltage pair.

In this example, the voltage difference is between nodes 3 and 2,
so FA=V(3,2).

2. The dependent source statement then specifies that PO=1 and
P1=2.5. From the one-dimensional polynomial equation above,
the defining equation for V(5,0) is:

V(5,0) = 1+250V(3,2)
You can also express V(5,0) as E1:

E1l = 1+250V(3.2)

Two-Dimensional Function

If the function is two-dimensional (that is, a function of two node
voltages or two branch currents), the following expression
determines FV:

FV = PO + (P1[FA) + (P2 (FB) + (P3 [FA) + (P4 [FA [FB) + (P5 [FB°)
+ (P6 CFA) + (P7 (FAZ [FB) + (P8 (FA [FB?) + (P9 (FBY) + ...

Sources and Stimuli: Voltage and Current Controlled Elements
5-30

For a two-dimensional polynomial, the controlled source is a function
of two nodal voltages or currents. To specify a two-dimensional
polynomial, set POLY(2) in the controlled source statement.

For example, generate a voltage-controlled source that specifies the
controlled voltage, V(1,0), as:

V(1,0) = 30V/(3,2) +4 DV(7,6)2

or

E1 = 30V(3,2) + 4 V(7,6)2

To implement this function, use this controlled-source element
statement:

El 1 0 POLY(2) 3276030004

This example specifies a controlled voltage source, which connects
between nodes 1 and 0. Two differential voltages control this voltage
source:

* Voltage difference between nodes 3 and 2.
» Voltage difference between nodes 7 and 6.

That is, FA=V(3,2), and FB=V(7,6). The polynomial coefficients are:
« PO0=0

. P1=3
. P2=0
. P3=0
. P4=0
. P5=4

Sources and Stimuli: Voltage and Current Controlled Elements
5-31

Three-Dimensional Function

For a three-dimensional polynomial function, with FA, FB, and FC as
its arguments, the following expression determines the rv function
value:

FV = PO+ (P1CFA) + (P2 [FB) + (P3 [FC) + (P4 [FA?)
+ (P5 [FA [FB) + (P6 [FA [FC) + (P7 [FB2) + (P8 [FB [FC)
+ (P9 [FC2) + (P10 [FA3) + (P11 [FAZ [FB) + (P12 [FAZ [FC)
+ (P13 [FA [FB2) + (P14 [FA [FB [FC) + (P15 [FA [FC?)
+ (P16 [FB3) + (P17 [FB2 [FC) + (P18 [FB [FC?)
+ (P19 [FC3) + (P20 [FA%) + ...

For example, generate a voltage-controlled source that specifies the
voltage as:

V(1,0) = 30V(3,2) + 4 V(7,6)2 + 5 V(9,8)3

or

E1 = 30V(3,2) + 4 DV(7,6)2 + 5 [V(9,8)3

The resulting three-dimensional polynomial equation is:

FA = V(3,2)

FB = V(7,6)

FC = V(9,8)
P1 =3
P7 = 4
P19 = 5

Sources and Stimuli: Voltage and Current Controlled Elements
5-32

Substitute these values into the voltage controlled voltage source
statement:

V(1,0) POLY(3)32769803000004000000000005

or

El1l 10POY(3) 32769803000004000000
+ 000005

The preceding example specifies a controlled voltage source, which
connects between nodes 1 and 0. Three differential voltages control
this voltage source:

« Voltage difference between nodes 3 and 2.
» Voltage difference between nodes 7 and 6.

« Voltage difference between nodes 9 and 8.

That is:

- FA=V(3,2)
- FB=V(7,6)
« FC=V(9,8)

The statement defines the polynomial coefficients as:

. P1=3
. P7=4
. P19=5

e Other coefficients are zero.

Sources and Stimuli: Voltage and Current Controlled Elements
5-33

Piecewise Linear Function

You can use the one-dimensional piecewise linear (PWL) function to
model special element characteristics, such as those of:

e tunnel diodes
» silicon-controlled rectifiers
e diode breakdown regions

To describe the piecewise linear function, specify measured data
points. Although data points describe the device characteristic,
HSPICE automatically smooths the corners, to ensure derivative
continuity. This, in turn, results in better convergence.

The DELTA parameter controls the curvature of the characteristic at
the corners. The smaller the DELTA, the sharper the corners are.
The maximum DELTA is limited to half of the smallest breakpoint
distance. If the breakpoints are sufficiently separated, specify the
DELTA to a proper value.

* You can specify up to 100 point pairs.

* You must specify at least two point pairs (each point consists of
an x and a y coefficient).

To model bidirectional switch or transfer gates, G Elements use the
NPWL and PPWL functions, which behave the same way as NMOS
and PMOS transistors.

You can also use the piecewise linear function to model multi-input
AND, NAND,OR, and NOR gates. In this usage, only one input
determines the state of the output.

* In AND and NAND gates, the input with the smallest value
determines the corresponding output of the gates.

* In OR and NOR gates, the input with the largest value
determines the corresponding output of the gates.

Sources and Stimuli: Voltage and Current Controlled Elements

5-34

Power Sources

This section describes independent sources and controlled sources.

Independent Sources

A power source is a special kind of voltage or current source, which
supplies the network with a pre-defined power that varies by time or
frequency. The source produces a specific input impedance.

To apply a power source to a network, you can use either:

* A Norton-equivalent circuit (if you specify this circuit and a
current source)—the | (current source) element, or

* A Thevenin-equivalent circuit (if you specify this circuit and a
voltage source)—the V (voltage source) element.

As with other independent sources, simulation assumes that positive
current flows from the positive node, through the source, to the
negative node. A power source is a time-variant or frequency-
dependent utility source; therefore, the value/phase can be a
function of either time or frequency.

A power source is a sub-class of the independent voltage/current
source, with some additional keywords or parameters:

 YoucanuselandV elementsin DC, AC, and transient analysis.
« Theland V elements can be data-driven.

Supported formats include:

« PULSE, a trapezoidal pulse function.

« PW.L, a piecewise linear function, with repeat function.

» PL, a piecewise linear function. PWL and PL are the same
piecewise linear function, except PL uses the v1 t1 pair instead
of the t1 v1 pair.

Sources and Stimuli: Power Sources
5-35

« SIN, a damped sinusoidal function.
« EXP, an exponential function.
 SFFM, a single-frequency FM function.

* AM, an amplitude-modulation function.

SYNTAX:

If you use the power keyword in the netlist, then simulation
recognizes a current/voltage source as a power source:

VXxxXx node+ node- power=<power Val <power Fun>> i np=val uel
+ i np_ac=val ue2, val ue3 power Fun=<FREQ <TI ME>>(...)

| xxx node+ node- power=<power Val <power Fun>> inp=val uel
+ i np_ac=val ue2, val ue3 power Fun=<FREQ <TI ME>>(. . .)

Table 5-13 Power Source Parameters

Parameter | Description

powerVal A constant power source supplies the available power. If you specify
option=POWER_DB, then the value is in decibels; otherwise it is in
Watts*POWER_SCAL. In this equation, POWER_SCAL is a scaling
factor that you specify in the .OPTION statement.

powerFun This function name indicates the time-variant or frequency-variant power
source. In this equation, powerFun defines the functional dependence on
time or frequency.

« If the function name for powerFun is FREQ, then it is a frequency
power source: FREQ(freql, vall, freq2, val2,...)

 [fthe function name for powerFun is TIME, then it is a piece-wise time
variant function: TIME(t1, vall, t2, val2...)

imp= DC impedance value.
imp_ac= Magnitude and phase offset (in degrees) of AC impedance.
EXAMPLE 1:

V11l 10 20 power =5 i np=5K

This example applies a 5-decibel/unit power source to node 10 and
node 20, in a Thevenin-equivalent manner. The impedance of this
power source is 5k Ohms.

Sources and Stimuli: Power Sources

5-36

EXAMPLE 2:
Iname 1 0 power =20 i np=9MEG

This example applies a 20-decibel/unit power source to node 1 and
to ground, in a Norton-equivalent manner. The source impedance is
9 mega-ohms.

EXAMPLE 3:

V5 6 0 power =FREQ(10HZ, 2, 10KHZ, 0.01) i np=2MEG
+ inp_ac=(100K, 60)

V5 6 0 power=funcl i np=2MEG i np_ac=(100K, 60DEC)
+ funcl=FREQ(10HzZ, 2, 10KHz, 0.01)

In the two preceding examples, a power source operates at two
different frequencies, with two different values:

e At 10 Hertz, the power value is 2 decibel/unit.
« At 10K Hertz, the power value is 0.01 decibel/unit.

Also in these examples:

« The DC impedance is 2 mega-ohms.
« The AC impedance is 100 kilo-ohmes.

» The phase offset is 60 degrees.

Table 5-14 Independent Source Options

Option Description

POWER_SCAL Sets the scaling factor, for power values.
« If you specify this value, the power unit is in Watts*POWER_SCAL.
o Defaultis 1.

POWER_DB Specifies that the power value is in decibels.

Sources and Stimuli: Power Sources
5-37

Outputs
None.

Controlled Sources

In addition to independent power sources, you can also create four
types of controlled sources:

» Voltage-controlled voltage source (VCVS), or E element
» Current-controlled current source (CCCS), or F element
» Voltage-controlled current source (VCCS), or G element

« Current-controlled voltage source (CCVS), or H element

Voltage-Dependent Voltage Sources — E Elements

This section explains E Element syntax statements, and defines their
parameters.

e Level=1is an OPAMP.
e Level=2is a TRANSFORMER.

Voltage-Controlled Voltage Source (VCVS)

The syntax is:

Linear

Exxx n+ n- <VCVS> in+ in- gain <MAX=val > <M N=val >
+ <SCALE=val > <TCl=val > <TC2=val ><ABS=1> <I| C=val >

You must specify the MAX, MIN, SCALE, TC1, TC2, ABS, and IC
parameters.

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements
5-38

Polynomial (POLY)

Exxx n+ n- <VCVS> POLY(NDIM inl+ inl-
+ i nndi m+ i nndi m <TCl=val > <TC2=val > <SCALE=val >
+ <MAX=val > <M N=val > <ABS=1> p0 <pl..> <l C=val >

In this syntax, dim (dimensions)< 3.

Piecewise Linear (PWL)

Exxx n+ n- <VCVS> PW.(1) in+ in- <DELTA=val >
+ <SCALE=val > <TCl=val > <TC2=val > x1,yl x2,y2

+ x100, y100 <I C=val >

You must specify the DELTA, SCALE, TC1, TC2, and IC parameters.

Multi-Input Gates

Exxx n+ n- <VCVS> gatetype(k) inl+ inl- ... inj+ inj-
+ <DELTA=val > <TCl=val > <TC2=val > <SCALE=val >
+ x1,yl ... x100, y100 <I| C=val >

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Delay Element

Exxx n+ n- <VCVS> DELAY in+ in- TD=val <SCALE=val >
+ <TCl=val > <TC2=val > <NPDELAY=val >

You must specify the NPDELAY, SCALE, TC1, and TC2 parameters.

Behavioral Voltage Source

SYNTAX:
Exxx n+ n- VOL=" equation’ <MAX=val > <M N=val >

In this syntax, Ename n1 n2 VOL="equation’ [MAX=max][MIN=min.

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements
5-39

Ideal Op-Amp

SYNTAX:

Exxx n+ n- OPAMP in+ in-

You can also substitute Level=1 in place of OPAMP.

Ideal Transformer

SYNTAX:

Exxx n+ n- TRANSFORMER in+ in- k
You can also substitute Level=2 in place of TRANSFORMER.

Table 5-15 E Element Syntax (Sheet 1 of 3)

Parameter

Description

ABS

Output is an absolute value, if ABS=1.

DELAY

Keyword for the delay element. Same as for the voltage-controlled
voltage source, except it has an associated propagation delay, TD. This
element adjusts propagation delay in macro (subcircuit) modeling.

DELAY is a reserved word; do not use it as a node name.

DELTA

Controls the curvature of the piecewise linear corners. This parameter
defaults to one-fourth of the smallest distance between breakpoints. The
maximum is one-half of the smallest distance between breakpoints.

Exxx

Voltage-controlled element name. Must begin with E, followed by up to
1023 alphanumeric characters.

gain

Voltage gain.

gatetype(k)

Can be AND, NAND, OR, or NOR.
k represents the number of inputs of the gate.

x and y represent the piecewise linear variation of output, as a function
of input. In multi-input gates, only one input determines the state of the
output.

Initial condition: initial estimate of controlling voltage value(s). If you do
not specify IC, default=0.0.

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements

5-40

Table 5-15 E Element Syntax (Sheet 2 of 3)

Parameter Description

in +/- Positive or negative controlling nodes. Specify one pair for each
dimension.

k Ideal transformer turn ratio: V(in+,in-) = k b V(n+,n-)
or, number of gates input.

MAX Maximum output voltage value. The default is undefined, and sets no
maximum value.

MIN Minimum output voltage value. The default is undefined, and sets no
minimum value.

n+/- Positive or negative node of a controlled element.

NDIM Number of polynomial dimensions. If you do not set POLY(NDIM),
HSPICE assumes a one-dimensional polynomial. NDIM must be a
positive number.

NPDELAY Sets the number of data points to use in delay simulations. The default
value is the larger of either 10, or the smaller of TD/tstep and tstop/tstep.

. _ min [TD, tstopO
Thatis, NPDELAY oo it = max[ot ,10}
The .TRAN statement specifies tstep and tstop values.

OPAMP The keyword for an ideal op-amp element. OPAMP is a HSPICE

or Level=1 reserved word; do not use it as a node name.

PO, P1 ... The polynomial coefficients.

If you specify one coefficient, HSPICE assumes that it is P1 (P0=0.0),
and that the element is linear.

If you specify more than one polynomial coefficient, the element is
nonlinear, and PO, P1, P2 ... represent them (see Polynomial Functions
on page 5-29).

POLY Keyword for the polynomial function. If you do not specify POLY(ndim) ,
HSPICE assumes a one-dimensional polynomial. Ndim must be a
positive number.

PWL Keyword for the piecewise linear function.

SCALE Multiplier for the element value.

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements
5-41

Table 5-15 E Element Syntax (Sheet 3 of 3)

Parameter Description

TC1,TC2 First-order and second-order temperature coefficients. Temperature
changes update the SCALE:
SCALEeff = SCALEQ1+TC1[At+TC2 Dﬁtz)

TD Keyword for the time (propagation) delay.

TRANSFORMER Keyword for an ideal transformer. TRANSFORMER is a reserved word;

or Level=2 do not use it as a node name.

VCVS Keyword for a voltage-controlled voltage source. VCVS is a reserved
word; do not use it as a node name.

x1,... Controlling voltage across the in+ and in- nodes. The x values must be
in increasing order.

yi,... Corresponding element values of x.

E Element Examples

Ideal OpAmp

You can use the voltage-controlled voltage source to build a voltage
amplifier, with supply limits.

» The output voltage across nodes 2,3 is v(14,1) * 2.

» The value of the voltage gain parameter is 2.

 The MAX parameter sets a maximum E1 voltage of 5 V.

 The MIN parameter sets a minimum E1 voltage output of -5 V.

EXAMPLE:

If V(14,1) = -4V, then HSPICE sets E1 to -5V, and not -8V as the
equation suggests.

Eopanmp 2 3 14 1 MAX=45 M N=-5 2.0
You can also substitute Level=1 in place of OPAMP.

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements

5-42

To specify a value for polynomial coefficient parameters, use the
following format:

.PARAM CU = 2.0
El 2 3 14 1 MAX=+5 M N=-5 CU
Voltage Summer

An ideal voltage summer specifies the source voltage, as a function
of three controlling voltage(s):

.« V(13,0
. V(15,0
. V(17,0

To describe a voltage source, the voltage summer uses this value:
V(13,0) + V(15,0) + V(17,0)

This example represents an ideal voltage summer. It initializes the
three controlling voltages, for a DC operating point analysis, to 1.5,
2.0,and 17.25 V.

EX 17 0 POLY(3) 13 01501700 1111C1.5,2.0,17.25

Polynomial Function

A voltage-controlled source can also output a non-linear function,
using a one-dimensional polynomial. This example does not specify
the poLy parameter, so HSPICE assumes it is a one-dimensional
polynomial—that is, a function of one controlling voltage. The
eqguation corresponds to the element syntax. Behavioral equations
replace this older method.

V (3,4) = 10.5 + 2.1 *V(21,17) + 1.75 *V(21,17)?
E2 3 4 PCLY 21 17 10.5 2.1 1.75

E2 3 4 VOLT = “10.5 + 2.1 *\(21,17) + 1.75 *\V(21,17)2
E2 3 4 POLY 21 17 10.5 2.1 1.75

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements
5-43

Zero-Delay Inverter Gate

Use a piecewise linear transfer function to build a simple inverter,
with no delay.

Einv out 0 PAL(1) in O .7v,5v 1lv, Ov

Ideal Transformer
If the turn ratio is 10 to 1, the voltage relationship is V(out)=V(in)/10.

Etrans out 0 TRANSFORMER in 0 10
You can also substitute Level=2 in place of TRANSFORMER.

Voltage-Controlled Oscillator (VCO)

The VOL keyword defines a single-ended input, which controls
output of a VCO.

In the following example, the voltage at the control node controls the
frequency of the sinusoidal output voltage at the out node. vO is the
DC offset voltage, and gain is the amplitude. The output is a
sinusoidal voltage, whose frequency is specified in freq - control.

Evco out O
VOL=" vO+gai n*SI N(6. 28 freg*v(control)*TI ME)

Note: This equation is valid only for a steady-state VCO (fixed
voltage). If you sweep the control voltage, this equation does
not apply.

Sources and Stimuli: Voltage-Dependent Voltage Sources — E Elements
5-44

Current-Dependent Current Sources — F Elements

This section explains the F Element syntax and parameters.

Current-Controlled Current Source (CCCS) Syntax

Linear

Fxxx n+ n- <CCCS> vnl gai n <MAX=val > <M N=val > <SCALE=val >
+ <TCl=val > <TC2=val > <Mrval > <ABS=1> <| C=val >

You must specify the MAX, MIN, SCALE, TC1, TC2, M, ABS, and IC
parameters.

Polynomial (POLY)

Fxxx n+ n- <CCCS> POLY(ndinm) vnl <... vnndi n> <MAX=val >
+ <M N=val > <TCl=val > <TC2=val > <SCALE=val > <Mrval >
+ <ABS=1> p0 <pl..> <l C=val >

In this syntax, dim (dimensions)< 3.

Piecewise Linear (PWL)

Fxxx n+ n- <CCCS> PW.(1l) vnl <DELTA=val >
+ <SCALE=val ><TCl=val > <TC2=val > <Mrval >

+ x1,yl ... x100,y100 <I C=val >
You must specify the DELTA, SCALE, TC1, TC2, M, and IC
parameters.

Multi-Input Gates

Fxxx n+ n- <CCCS> gatetype(k) vnl, ... vnk <DELTA=val >
+ <SCALE=val > <TCl=val > <TC2=val > <Mrval > <ABS=1>
+ x1,yl ... x100, y100 <I| C=val >

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Sources and Stimuli: Current-Dependent Current Sources — F Elements
5-45

Delay Element

Fxxx n+ n- <CCCS> DELAY vnl TD=val <SCALE=val >

+ <TCl=val ><TC2=val > NPDELAY=val

You must specify the NPDELAY, SCALE, TC1, TC2, and M
parameters.

Note: G Elements with algebraics make CCCS elements obsolete.
You can still use CCCS elements for backward-compatibility
with existing designs.

F Element Parameters

Table 5-16 F Element Syntax

Parameter | Description

ABS Output is an absolute value, if ABS=1.

CCCs Keyword for current-controlled current source. CCCS is a HSPICE reserved
keyword; do not use it as a hode name.

DELAY Keyword for the delay element. Same as for a current-controlled current
source, but has an associated propagation delay, TD. Adjusts the
propagation delay in the macro model (subcircuit) process. DELAY is a
reserved word; do not use it as a node name.

DELTA Controls the curvature of piecewise linear corners. The default is 1/4 of the
smallest distance between breakpoints. The maximum is 1/2 of the smallest
distance between breakpoints.

Fxxx Element name of the current-controlled current source. Must begin with F,
followed by up to 1023 alphanumeric characters.

gain Current gain.

gatetype(k) | AND, NAND, OR, or NOR. k is the number of inputs for the gate. xand y are
the piecewise linear variation of the output, as a function of input. In multi-
input gates, only one input determines the output state. Do not use the above
keywords as node names.

IC Initial condition (estimate) of the controlling current(s), in amps. If you do not
specify IC, the default=0.0.

M Number of replications of the element, in parallel.

Sources and Stimuli: Current-Dependent Current Sources — F Elements
5-46

Table 5-16 F Element Syntax (Continued)

Parameter | Description

MAX Maximum output current. Default=undefined; sets no maximum.

MIN Minimum output current. Default=undefined; sets no minimum.

n+/- Connecting nodes for a positive or negative controlled source.

NDIM Number of polynomial dimensions. If you do not specify POLY(NDIM),
HSPICE assumes a one-dimensional polynomial. NDIM must be a positive
number.

NPDELAY Number of data points to use in delay simulations. The default value is the
larger of either 10, or the smaller of TD/tstep and tstop/tstep. That is,

_ min D, tstopd
NPDELAY ygtaulr = max[oo ,10}
The .TRAN statement specifies the tstep and tstop values.

PO, P1 ... The polynomial coefficients.

If you specify one coefficient, HSPICE assumes it is P1 (P0=0.0), and the
source element is linear.

If you specify more than one polynomial coefficient, then the source is non-
linear, and HSPICE assumes that the polynomials are PO, P1, P2 ... See
Polynomial Functions on page 5-29.

POLY Keyword for the polynomial function. If you do not specify POLY (ndim),
HSPICE assumes that this is a one-dimensional polynomial. Ndim must be
a positive number.

PWL Keyword for the piecewise linear function.

SCALE Multiplier for the element value.

TC1,TC2 First-order and second-order temperature coefficients. Temperature
changes update the
SCALE: SCALEeff = SCALE {1 + TC1 At + TC2 [At2)

TD Keyword for the time (propagation) delay.

vnl ... Names of voltage sources, through which the controlling current flows.
Specify one name for each dimension.

x1,... Controlling current, through the vnl source. Specify the x values in
increasing order.

vi,... Corresponding output current values of x.

Sources and Stimuli: Current-Dependent Current Sources — F Elements
5-47

EXAMPLE 1:
F1 13 5 VSENS MAX=+3 M N=-3 5

Example 1 describes a current-controlled current source, connected
between nodes 13 and 5. The current, which controls the value of the
controlled source, flows through the voltage source named VSENS.

Note: To use a current-controlled current source, you can place a
dummy independent voltage source into the path of the
controlling current.

The defining equation is:
I((F1) = 50(VSENS)
e Current gain is 5.
* Maximum current flow through F1 is 3 A.
e Minimum current flow is -3 A.

If IVSENS) = 2 A, then this examples sets I(F1) to 3 amps, not 10
amps (as the equation suggests). You can define a parameter for the
polynomial coefficient(s):

. PARAM VU = 5

F1 13 5 VSENS MAX=+3 M N=-3 VU

EXAMPLE 2:

F2 12 10 PCLY VCC 1MA 1. 3M

Example 2 is a current-controlled current source, with the value:
| (F2) =le-3 + 1.3e-3 Ol (VCC)

Current flows from the positive node, through the source, to the
negative node. The positive controlling-current flows from the
positive node, through the source, to the negative node of vnam
(linear), or to the negative node of each voltage source (nonlinear).

Sources and Stimuli: Current-Dependent Current Sources — F Elements
5-48

EXAMPLE 3:
Fd 1 0 DELAY vin TD=7ns SCALE=5

Example 3 is a delayed, current-controlled current source.

EXAMPLE 4:
FilimO out PW(1) vsrc -1a,-1la 1la, la

Example 4 is a piecewise-linear, current-controlled current source.

Voltage-Dependent Current Sources — G Elements
This section explains G Element syntax statements, and their
parameters.

» Level=0 is a Voltage-Controlled Voltage Source (VCVS).
 Level=1is a Voltage-Controlled Resistor (VCR).

» Level=2 is a Voltage-Controlled Capacitor (VCCAP), Negative
Piece-Wise Linear (NPWL).

 Level=3is a VCCAP, Positive Piece-Wise Linear (PPWL).

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-49

Voltage-Controlled Current Source (VCCS)

The Level=0 syntax is:

Linear

GxX n+ n- <VCCS> i n+ in- transconductance <MAX=val >
+ <M N=val > <SCALE=val > <Meval > <TCl=val > <TC2=val >
+ <ABS=1> <| C=val >

Polynomial (POLY)

&xxx n+ n- <VCCS> POLY(NDIM inl+inl- ... <inndiminndim>
+ <MAX=val > <M N=val > <SCALE=val > <Meval > <TCl=val >
+ <TC2=val > <ABS=1> PO<Pl..> <| C=val s>

Piecewise Linear (PWL)

&xxx n+ n- <VCCS> PW.(1) in+ in- <DELTA=val >
+ <SCALE=val > <Mrval > <TCl=val > <TC2=val >
+ x1,y1l x2,y2 ... x100,y100 <|C=val > <SMOOTH=val >

XXX n+ n- <VCCS> NPWL(1) in+ in- <DELTA=val >
+ <SCALE=val > <Mrval > <TCl=val ><TC2=val >
+ x1,y1 x2,y2 ... x100,y100 <I C=val > <SMOOTH=val >

&xxx n+ n- <VCCS> PPW.(1) in+ in- <DELTA=val >
+ <SCALE=val > <Mrval > <TCl=val > <TC2=val >
+ x1,y1l x2,y2 ... x100,y100 <|C=val > <SMOOTH=val >

Multi-Input Gate

&xXxxX n+ n- <VCCS> gatetype(k) inl+ inl- ...
+ i nk+ i nk- <DELTA=val > <TCl=val > <TC2=val > <SCALE=val >
+ <Meval > x1,y1 ... x100,y100<I C=val >

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Delay Element

Gxxx n+ n- <VCCS> DELAY in+ in- TD=val <SCALE=val >
+ <TCl=val > <TC2=val > NPDELAY=val

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-50

Behavioral Current Source Syntax

Gxxx n+ n- CUR="equation’ <MAX>=val > <M N=val > <Me=val >
+ <SCALE=val >

Voltage-Controlled Resistor (VCR)

The Level=1 syntax is:

Linear

Gxx n+ n- VCR in+ in- transfactor <MAX=val > <M N=val >
+ <SCALE=val > <Meval > <TCl=val > <TC2=val > <I| C=val >

Polynomial (POLY)

&xxx n+ n- VCR POLY(NDIM inl+ inl-
+ <inndi mt i nndi m> <MAX=val > <M N=val ><SCALE=val >
+ <Meval > <TCl=val > <TC2=val > PO <P1.> <| C=val s>

Piecewise Linear (PWL)

&xxx n+ n- VCR PW.(1) in+ in- <DELTA=val > <SCALE=val >
+ <Meval > <TCl=val > <TC2=val > x1,yl x2,y2 ... x100,y100
+ <I C=val > <SMOOTH=val >

&xxx n+ n- VCR NPW.(1) in+ in- <DELTA=val > <SCALE=val >
+ <Mrval > <TCl=val > <TC2=val > x1,y1l x2,y2 ... x100,y100
+ <] C=val > <SMOOTH=val >

xxx n+ n- VCR PPW.(1) in+ in- <DELTA=val > <SCALE=val >

+ <Meval > <TCl=val > <TC2=val > x1,yl x2,y2 ... x100,y100
+ <I C=val > <SMOOTH=val >

Multi-Input Gates

&xxx n+ n- VCR gatetype(k) inl+ inl- ... ink+ ink-
+ <DELTA=val > <TCl=val > <TC2=val > <SCALE=val > <Mrval >
+ x1,y1 ... x100,y100 <| C=val >

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-51

Voltage-Controlled Capacitor (VCCAP)

The Level=2 (NPWL) and Level=3 (PPWL) piecewise linear syntax is:

&xxx n+ n- VCCAP PW.(1l) in+ in- <DELTA=val >
+ <SCALE=val > <Mrval > <TCl=val > <TC2=val >
+ x1,y1 x2,y2 ... x100,y100 <IC=val > <SMOOTH=val >

HSPICE determines whether to use Level=2 (NPWL) or Level=3
(PPWL), based on the relationship of the (n+, n-) and (in+, in-) nodes.

Use the NPWL and PPWL functions to interchange the n+ and n-
nodes, but use the same transfer function. The following summarizes
this action:

NPWL Function

For the in- node, connected to n-:

« If v(n+,n-) >0, then the controlling voltage is v(in+,in-).

« Otherwise, the controlling voltage is v(in+,n+).

For the in- node, connected to n+:

« If v(n+,n-) <0, then the controlling voltage is v(in+,in-).

« Otherwise, the controlling voltage is v(in+,n+).

PPWL Function

For the in- node, connected to n-:

« If v(n+,n-) <0, then the controlling voltage is v(in+,in1-).
« Otherwise, the controlling voltage is v(in+,n+).

For the in- node, connected to n+:

« If v(n+,n-) >0, then the controlling voltage is v(in+,in-).
« Otherwise, the controlling voltage is v(in+,n+).

If the in- node does not connect to either n+ or n-, then HSPICE
changes NPWL and PPWL to PWL.

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-52

G Element Parameters
Table 5-17 G Element Syntax (Sheet 1 of 3)

Parameter Description

ABS Output is an absolute value, if ABS=1.

CUR, VALUE Current output that flows from n+ to n-. The equation that you define can be
a function of:

* node voltages

» branch currents

« TIME

» temperature (TEMPER)
» frequency (HERTZ)

DELAY Keyword for the delay element. Same as in the voltage-controlled current
source, but has an associated propagation delay, TD. Adjusts propagation
delay in macro (subcircuit) modeling. DELAY is a keyword; do not use it as
a node name.

DELTA Controls curvature of piecewise linear corners. Defaults to
1/4 of the smallest distance between breakpoints. Maximum is 1/2 of the
smallest distance between breakpoints.

GXxXx Name of the voltage-controlled element. Must begin with G, followed by up
to 1023 alphanumeric characters.

gatetype(k) AND, NAND, OR, or NOR. The k parameter is the number of inputs of the
gate. x and y represent the piecewise linear variation of the output, as a
function of the input. In multi-input gates, only one input determines the
state of the output.

IC Initial condition. Initial estimate of the value(s) of controlling voltage(s). If
you do not specify IC, the default=0.0.

in +/- Positive or negative controlling nodes. Specify one pair for each dimension.

M Number of replications of the elements in parallel.

MAX Maximum value of the current or resistance. The default is undefined, and
sets no maximum value.

MIN Minimum value of the current or resistance. The default is undefined, and
sets no minimum value.

n+/- Positive or negative node of the controlled element.

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-53

Table 5-17 G Element Syntax (Sheet 2 of 3)

Parameter Description
NDIM Number of polynomial dimensions. If you do not specify POLY(NDI M) ,
HSPICE assumes a one-dimensional polynomial. NDI Mmust be a positive
number.
NPDELAY Sets the number of data points to use in delay simulations. The default
value is the larger of either 10, or the smaller of TD/tstep and tstop/tstep.
. _ min [TD, tstop
Thatis, NPDELAY oo it = max[st ,10]
The .TRAN statement specifies the tstep and tstop values.
NPWL Models symmetrical bidirectional switch/transfer gate, NMOS.
PO, P1 ... The polynomial coefficients.
» If you specify one coefficient, HSPICE assumes that it is P1 (P0=0.0),
and the element is linear.
» If you specify more than one polynomial coefficient, the element is non-
linear, and the coefficients are PO, P1, P2 ... (see Polynomial Functions
on page 5-29).
POLY Keyword for the polynomial dimension function. If you do not specify
POLY(ndim), HSPICE assumes that it is a one-dimensional polynomial.
Ndim must be a positive number.
PWL Keyword for the piecewise linear function.
PPWL Models symmetrical bidirectional switch/transfer gate, PMOS.
SCALE Multiplier for the element value.
TD Keyword for the time (propagation) delay.
transconductance | Voltage-to-current conversion factor.
SMOOTH For piecewise-linear, dependent-source elements, SMOOTH selects the

curve-smoothing method.

A curve-smoothing method simulates exact data points that you provide.
You can use this method to make HSPICE simulate specific data points,
which correspond to either measured data or data sheets.

Choices for SMOOTH are 1 or 2:

» Selects the smoothing method used in Hspice versions before release
H93A. Use this method to maintain compatibility with simulations that
you ran, using releases older than H93A.

» Selects the smoothing method, which uses data points that you provide.
This is the default for Hspice versions starting with release H93A.

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements

5-54

Table 5-17 G Element Syntax (Sheet 3 of 3)

Parameter Description

TC1,TC2 First-order and second-order temperature coefficients. Temperature
changes update the
SCALE: SCALEeff = SCALE ({1 + TC1 [At+ TC2 [At2).

transfactor Voltage-to-resistance conversion factor.

VCCAP Keyword for voltage-controlled capacitance element. VCCAP is a reserved
HSPICE keyword; do not use it as a hode name.

VCCS Keyword for the voltage-controlled current source. VCCS is a reserved
HSPICE keyword; do not use it as a hode name.

VCR Keyword for the voltage controlled resistor element. VCR is a reserved
HSPICE keyword; do not use it as a node name.

x1,... Controlling voltage, across the in+ and in- nodes. Specify the x values in
increasing order.

vi,... Corresponding element values of x.

G Element Examples

Switch

A voltage-controlled resistor represents a basic switch
characteristic. The resistance between nodes 2 and 0 varies linearly,
from 10 meg to 1 m ohms, when voltage across nodes 1 and O varies
between 0 and 1 volt. The resistance remains at 10 meg when below
the lower voltage limit, and at 1 m ohms when above the upper
voltage limit.

Gswitch 2 0 VCR PW.(1) 1 O Ov, 10nmeg 1lv, 1m

Switch-Level MOSFET

To model a switch level n-channel MOSFET, use the N-piecewise
linear resistance switch. The resistance value does not change when
you switch the d and s node positions.

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-55

Gmos d s VCR NPW.(1) g s LEVEL=1 0. 4v, 1509
+ 1lv, 10neg 2v, 50k 3v, 4k 5v, 2k

Voltage-Controlled Capacitor

The capacitance value across the (out,0) nodes varies linearly (from
1 p to 5 p), when voltage across the ctrl,0 nodes varies between 2 v
and 2.5 v. The capacitance value remains constant at 1 picofarad
when below the lower voltage limit, and at 5 picofarads when above
the upper voltage limit.

Ccap out 0 VCCAP PW.(1) ctrl O 2v,1p 2.5v,5p

Zero-Delay Gate

To implement a two-input AND gate, use an expression and a
piecewise linear table.

« The inputs are voltages at the a and b nodes.
* The output is the current flow from the out to 0 node.

« HSPICE multiplies the current by the SCALE value—which in this
example, is the inverse of the load resistance, connected across
the out,0 nodes.

Gand out 0 AND(2) a 0 b 0 SCALE="1/rl oad’ Ov, Oa 1lv,.5a
+ 4v, 4. 5a 5v, 5a

Delay Element

A delay is a low-pass filter type delay, similar to that of an opamp. In
contrast, a transmission line has an infinite frequency response. A
glitch input to a cdelay attenuates in a way that is similar to a buffer
circuit. In this example, the output of the delay element is the current
flow, from the out node to the 1 node, with a value equal to the
voltage across the (in, 0) nodes, multiplied by the SCALE value, and
delayed by the TD value.

Gdel out O DELAY in O TD=5ns SCALE=2 NPDELAY=25

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-56

Diode Equation

To model forward-bias diode characteristics, from node 5 to ground,
use a runtime expression. The saturation current is 1e-14 amp, and
the thermal voltage is 0.025 v.

Gdio 5 0 CUR=' le- 14* (EXP(V(5)/ 0. 025)-1.0)’

Diode Breakdown

You can model the diode breakdown region to a forward region.
When voltage across a diode is above or below the piecewise linear
limit values (-2.2v, 2v), the diode current remains at the
corresponding limit values (-1a, 1.2a).

Cdiode 1 0 PAL(1) 1 0 -2.2v,-1a -2v,-1pa .3v,.15pa

+. 6v, 10ua 1lv, la 2v, 1. 2a

Triodes

Both of the following voltage-controlled current sources implement a
basic triode.

» The first example uses the poly(2) operator, to multiply the anode
and grid voltages together, and to scale by .02.

 The second example uses the explicit behavioral algebraic
description.

gt i _anode cat hode pol y(2) anode, cat hode
+ grid,cathode 0 0 0 0 .02

gt i _anode cat hode
+ cur="20nt*v(anode, cat hode) *v(gri d, cat hode)’

Sources and Stimuli: Voltage-Dependent Current Sources — G Elements
5-57

Current-Dependent Voltage Sources — H Elements

This section explains H Element syntax statements, and defines
their parameters.

Current-Controlled Voltage Source (CCVS)

The syntax is:

Linear

Hxxx n+ n- <CCVS> vnl transresi stance <MAX=val > <M N=val >
+ <SCALE=val > <TCl=val ><TC2=val > <ABS=1> <| C=val >

Polynomial (POLY)

Hxxx n+ n- <CCVS> POLY(NDIM vnl <... vnndinp
+ <MAX=val ><M N=val > <TCl=val > <TC2=val > <SCALE=val >
+ <ABS=1> PO <Pl.> <l C=val >

Piecewise Linear (PWL)

Hxxx n+ n- <CCVS> PW.(1l) vnl <DELTA=val > <SCALE=val >
+ <TCl=val > <TC2=val > x1,y1 ... x100, y100 <I C=val >

Multi-Input Gate

Hxxx n+ n- gatetype(k) vnl, ...vnk <DELTA=val > <SCALE=val >
+ <TCl=val > <TC2=val > x1,y1l ... x100, y100 <I C=val >

In this syntax, gatetype(k) can be AND, NAND, OR, or NOR gates.

Delay Element

Hxxx n+ n- <CCVS> DELAY vnl TD=val <SCALE=val > <TCl=val >
+ <TC2=val > <NPDELAY=val >

Note: E Elements with algebraics make CCVS elements obsolete.
You can still use CCVS elements for backward-compatibility
with existing designs.

Sources and Stimuli: Current-Dependent Voltage Sources — H Elements
5-58

H Element Parameters
Table 5-18 H Element Syntax

Parameter Description

ABS Output is an absolute value, if ABS=1.

CCvVvs Keyword for the current-controlled voltage source. CCVS is a HSPICE
reserved keyword; do not use it as a nhode name.

DELAY Keyword for the delay element. Same as for a current-controlled voltage
source, but has an associated propagation delay, TD. Use this element
to adjust the propagation delay in the macro (subcircuit) model process.
DELAY is a HSPICE reserved keyword; do not use it as a node name.

DELTA Controls curvature of piecewise linear corners. The default is 1/4 of the
smallest distance between breakpoints. Maximum is 1/2 of the smallest
distance between breakpoints.

gatetype(k) Can be AND, NAND, OR, or NOR. The k value is the number of inputs
of the gate. The x and y terms are the piecewise linear variation of the
output, as a function of the input. In multi-input gates, one input
determines the output state.

Hxxx Element name of current-controlled voltage source. Must start with H,
followed by up to 1023 alphanumeric characters.

IC Initial condition (estimate) of the controlling current(s), in amps. If you do
not specify IC, the default=0.0.

MAX Maximum voltage. Default is undefined; sets no maximum.

MIN Minimum voltage. Default is undefined; sets no minimum.

n+/- Connecting nodes, for positive or negative controlled source.

NDIM Number of polynomial dimensions. If you do not specify POLY(NDIM),
HSPICE assumes a one-dimensional polynomial. NDIM must be a
positive number.

NPDELAY Number of data points to use in delay simulations. The default value is

the larger of either 10, or the smaller of TD/tstep and tstop/tstep. That

min D, tstopD, 10]
tstep

is: NPDELAY yoco 1t = max[

The .TRAN statement specifies the tstep and tstop values.

Sources and Stimuli; Current-Dependent Voltage Sources — H Elements
5-59

Table 5-18 H Element Syntax (Continued)

Parameter Description

PO, P1... Polynomial coefficients.

» If you specify one polynomial coefficient, the source is linear, and
HSPICE assumes that the polynomial is P1 (P0=0.0).

» If you specify more than one polynomial coefficient, the source is non-
linear. HSPICE assumes the polynomials are PO, P1, P2 ... See
Polynomial Functions on page 5-29.

POLY Keyword for polynomial dimension function. If you do not specify
POLY(ndim), HSPICE assumes a one-dimensional polynomial. Ndim
must be a positive number.

PWL Keyword for a piecewise linear function.
SCALE Multiplier for the element value.
TC1,TC2 First-order and second-order temperature coefficients. Temperature

changes update the SCALE:
SCALEeff = SCALEQ1+TC1[At+TC2 Dﬁtz)

TD Keyword for the time (propagation) delay.

transresistance | Current-to-voltage conversion factor.

vnl ... Names of voltage sources, through which controlling current flows. You
must specify one nhame for each dimension.

x1,... Controlling current, through the vnl source. Specify the x values in
increasing order.

yi,... Corresponding output voltage values of x.

H Element Examples
HX 20 10 VCUR MAX=+10 M N=-10 1000

The example above selects a linear current-controlled voltage
source. The controlling current flows through the dependent voltage
source, called VCUR.

Sources and Stimuli: Current-Dependent Voltage Sources — H Elements
5-60

EXAMPLE 1:
The defining equation of the CCVS is:
HX = 1000 LWVCUR

The defining equation specifies that the voltage output of Hx is 1000
times the value of the current flowing through CUR.

« If the equation produces a value of HX greater than +10 V, then
the MAX= parameter sets HX to 10 V.

» If the equation produces a value of HX less than -10 V, then the
MIN= parameter sets HX to -10 V.

CUR is the name of the independent voltage source, through which
the controlling current flows. If the controlling current does not flow
through an independent voltage source, you must insert a dummy

independent voltage source.

EXAMPLE 2:

. PARAM CT=1000
HX 20 10 VCUR MAX=+10 M N=-10 CT
HXY 13 20 PCLY(2) VINL VIN2 0 0 0 0 1 1C=0.5, 1.3

The example above describes a dependent voltage source, with the
value: V = I(VIN1) O(VIN2)

This two-dimensional polynomial equation specifies:
« FA1=VIN1

« FA2=VIN2
. P0O=0
. P1=0
e P2=0
. P3=0
. P4=1

Sources and Stimuli; Current-Dependent Voltage Sources — H Elements
5-61

The initial controlling current is .5 mA through VIN1, and 1.3 mA for
VINZ2.

Positive controlling current flows from the positive node, through the
source, to the negative node of vnam (linear). The (non-linear)
polynomial specifies the source voltage, as a function of the
controlling current(s).

Digital and Mixed Mode Stimuli

HSPICE input netlists support two types of digital stimuli:
« U Element digital input files.
« Vector input files.

This section describes both types.

U Element Digital Input Elements and Models

This section describes the input file format for a U element. For a
description of the U element, see the HSPICE Signal Integrity Guide.

In HSPICE, the U Element can reference digital input and digital
output models, for mixed-mode simulation. Viewlogic’s Viewsim
mixed mode simulator uses HSPICE, with digital input from Viewsim.
If you run HSPICE in standalone mode, the state information
originates from a digital file. Digital outputs are handled in a similar
fashion. In digital input file mode, the input file is named
<design>.d2a, and the output file is named <design>.a2d.

A2D and D2A functions accept the terminal “\” backslash character
as a line-continuation character, to allow more than 255 characters
in a line. Use line continuation if the first line of a digital file, which
contains the signal name list, is longer than the maximum line length
that your text editor accepts.

Do not put a blank first line in a digital D2A file. If the first line of a
digital file is blank, HSPICE issues an error message.

Sources and Stimuli: Digital and Mixed Mode Stimuli

5-62

EXAMPLE:

The following example demonstrates how to use the “\" line
continuation character, to format an input file for text editing. The
example file contains a signal list for a 64-bit bus.

a00 a0l a02 a03 a04 a05 a06 a07 \
a08 a09 all0 all al2 al3 al4d ails \

* Continuation of signal names

asé ab7 ab58 ab59 a60 a6l a62 a63 End of signal nanes

Renmmi nder of file

General Form

The general syntax for a U Element digital source is:

Uxxx interface nl o nhi nmame SIGNAME = snane |S = val

Table 5-19 U Element Syntax

Parameter |Description

UXXX Digital input element name. Must begin with U, followed by up to 1023
alphanumeric characters.

interface Interface node in the circuit, to which the digital input attaches.

nlo Node connected to the low-level reference.

nhi Node connected to the high-level reference.

mname Digital input model reference (U model).

SIGNAME= | Signal name, as referenced in the digital output file header. Can be a string

shame of up to eight alphanumeric characters.

IS=val Initial state of the input element. Must be a state that the model defines.

Model Syntax
. MODEL mmane U LEVEL=5 <paraneters...>

Digital input.

Sources and Stimuli: Digital and Mixed Mode Stimuli

5-63

Digital-to-Analog Input Model Parameters

Table 5-20 Digital-to-Analog Parameters

Names (Alias) | Units Default | Description

CLO farad 0 Capacitance, to low-level node.

CHI farad 0 Capacitance, to high-level node.

SONAME State 0 character abbreviation. A string of up to
four alphanumerical characters.

SO0TSW sec State 0 switching time.

SORLO ohm State 0 resistance, to low-level node.

SORHI ohm State 0 resistance, to high-level node.

SINAME State 1 character abbreviation. A string of up to
four alphanumerical characters.

S1TSW sec State 1 switching time.

S1RLO ohm State 1 resistance, to low-level node.

S1RHI ohm State 1 resistance, to high-level node.

S19NAME State 19 character abbreviation. A string of up to
four alphanumerical characters.

S19TSW sec State 19 switching time.

S19RLO ohm State 19 resistance, to low-level node.

S19RHI ohm State 19 resistance, to high-level node.

TIMESTEP sec Step size, for digital input files only.

To define up to 20 different states in the model definition, use the
SnNAME, SnTSW, SnRLO and SnRHI parameters, where n ranges
from 0 to 19. Figure 5-7 shows the circuit representation of the
element.

Sources and Stimuli: Digital and Mixed Mode Stimuli
5-64

Figure 5-7 Digital-to-Analog Converter Element

(@
Node to
Hi_ref N |
source Ul
CHI
*—O
CLO Interface
Node to N Node
Low re U
soufce
o M
RLO

EXAMPLE:

The following example shows how to use the U Element and model,
as a digital input for a HSPICE netlist.

* EXAMPLE OF U-ELEMENT DI G TAL | NPUT

UC carry-in VLD2A VHD2A D2A SI GNAME=1 | S=0
VLO VLD2A GN\D DC 0

VH VHD2A G\D DC 1

. MODEL D2A U LEVEL=5 TI MESTEP=1NS,

+ SONAME=0 SOTSWFINS SORLO = 15, SORHI = 10K,
+ S2NAME=Xx S2TSWE3NS S2RLO = 1K, S2RH = 1K

+ S3NAME=z S3TSWS5NS S3RLO = 1MEG S3RH = 1IMEG
+ SANAME=1 SATSWEINS S4RLO = 10K, S4RHI = 60

. PRINT V(carry-in)
. TRAN 1N 100N

70
80

. END
The associated digital input file is:
1
00 1:1
09 z:1
10 0:1
11 z: 1
20 1:1
30 0:1
39 x:1
40 1:1
41 x:1
50 0:1
60 1:1
0:1
1:1

Sources and Stimuli: Digital and Mixed Mode Stimuli
5-65

U Element Digital Outputs

The general syntax for a digital output in a HSPICE output is:

U<nane> interface reference mane SI GNAME = snane

Table 5-21 U Element Syntax

Parameter |Description

UXXX Digital output element name. Must begin with U, followed by up to 1023
alphanumeric characters.

interface Interface node in the circuit, at which HSPICE measures the digital output.

reference Node to use as a reference for the output.

mname Digital output model reference (U model).

SIGNAME= |Signal name, as referenced in the digital output file header. A string of up to

shame eight alphanumeric characters.

Model Syntax
. MODEL mmane U LEVEL=4 <paraneters...>

Digital output.

Analog-to-Digital Output Model Parameters

Table 5-22 Analog-to-Digital Parameters

Name (Alias) Units Default | Description

RLOAD ohm 1/gmin Output resistance.

CLOAD farad 0 Output capacitance.

SONAME State 0 character abbreviation. A string of up to four
alphanumerical characters.

SOVLO volt State 0 low-level voltage.

SOVHI volt State 0 high-level voltage.

S1INAME State 1 character abbreviation. A string of up to four
alphanumerical characters.

S1VLO volt State 1 low-level voltage.

Sources and Stimuli: Digital and Mixed Mode Stimuli

5-66

Table 5-22 Analog-to-Digital Parameters (Continued)

Name (Alias) Units Default | Description

S1VHI volt State 1 high-level voltage.

S19NAME State 19 character abbreviation. A string of up to four
alphanumerical characters.

S19VLO volt State 19 low-level voltage.

S19VHI volt State 19 high-level voltage.

TIMESTEP sec 1E-9 Step size for digital input file.

TIMESCALE Scale factor, for time.

To define up to 20 different states in the model definition, use the
SnNAME, SnVLO and SnVHI parameters, where n ranges from 0 to

19. Figure 5-8 shows the circuit representation of the element.

Figure 5-8 Analog-to-Digital Converter Element

Interface Node

Analog-to-Digital
U model (level=4)

o ’
CLOAD| RLOA
e
o o

Reference Node

state conversion b

Sources and Stimuli: Digital and Mixed Mode Stimuli

5-67

Replacing Sources With Digital Inputs

Figure 5-9 Digital File Signal Correspondence

Traditional voltage pulse sources ...

V1 carry-in gnd PWL(ONS,lo 1NS,hi 7.5NS,hi 8.5NS,lo 15NS lo R
V2 A[0] gnd PWL (ONS,hi INS,lo 15.0NS,lo 16.0NS,hi 30NS hi R
V3 A[1] gnd PWL (ONS,hi INS,lo 15.0NS,lo 16.0NS,hi 30NS hi R
V4 B[0] gnd PWL (ONS,hi INS,lo 30.0NS,lo 31.0NS,hi 60NS hi
V5 B[1] gnd PWL (ONS,hi 1NS,lo 30.0NS,lo 31.0NS,hi 60NS hi

... become D2A drivers ... Y

UC carry-in VLD2A VHD2A D2A SIGNA 1S=0
UA[O] A[0] VLD2A VHD2A D2A SIG 1S=1
UA[1] A[1] VLD2A VHD2A D2A SIGNA 1S=1
UBI0] B[0] VLD2A VHD2A D2A 1S=1
UBI[1] B[1] VLD2A VHD2A D24 SIGNAME=D)IS=1

... that get their input from
the Digital stimulus file ...
<designname>.d2a
/ 0 %1@)0@(?3 0:4 0:5

750:1

Signalname list /1'150 1:11:21:3
Time (in model time units) 300 1:1 0:2 0:3 1:4 1°5
Statechange: Signal list %8 (1)% 1:21:3

5250:1
600 1:10:20:30:4 0:5

EXAMPLE:

The foll ow ng i s an exanpl e of repl aci ng sources with digital
I nput s.

* EXAMPLE OF U-ELEMENT DI G TAL OUTPUT
VOUT carry_out GND PW. ON OV 10N OV 11N 5V 19N 5V 20N 0V
+ 30N OV 31N 5V 39N 5V 40N 0V

VREF REF G\D DC 0. 0V
UCO carry-out REF A2D SI GNAME=12
* DEFAULT DI G TAL QUTPUT MCDEL (no “X' val ue)

Sources and Stimuli: Replacing Sources With Digital Inputs

5-68

. MODEL A2D U LEVEL=4 TI MESTEP=0. 1NS TI MESCALE=1
+ SONAME=0 SOVLO=-1 SOVHI = 2.7

+ SANAME=1 S4VLO= 1.4 S4VH =9.0

+ CLOAD=0. 05pf

. TRAN 1N 50N
. END

The digital output file should look like:

12

0 O:
1051:
1970:
3051:
3970:

RPRRPRR

« 12 represents the signal name

» The first column is the time, in units of 0.1 nanoseconds.
 The second column has the signal value:name pairs.

* This file uses more columns to represent subsequent outputs.

The following two-bit MOS adder uses the digital input file. In the plot
below, the ‘A[0], A[1], B[O], B[1], and CARRY-IN’ nodes all originate
from a digital file input (see Figure 5-9 on page 5-68). HSPICE
outputs a digital file.

FILE: MOS2BI T. SP - ADDER - 2 BI T ALL- NAND- GATE
+ BI NARY ADDER
*

. OPTI ON ACCT NOMOD FAST scal e=1u gm ndc=100n post
.param | mn=1.25 hi=2.8v | o0=.4v vdd=4.5

. gl obal vdd

*

. TRAN . 5NS 60NS
. MEAS PROP- DELAY TRI G V(carry-in) TD=10NS VAL=' vdd*.5
+ RISE=1 TARG V(c[1]) TD=10NS VAL='vdd*.5 RI SE=3

Sources and Stimuli: Replacing Sources With Digital Inputs
5-69

*

. MEAS PULSE-W DTH TRI G V(carry-out_1) VAL='vdd*.5
+ RISE=1 TARG V(carry-out_1) VAL='vdd*.5 FALL=1
*

. MEAS FALL-TIME TRI G V(c[1]) TD=32NS VAL='vdd*. 9
+ FALL=1 TARG V(c[1]) TD=32NS VAL='vdd*.1 FALL=1
*

VDD vdd gnd DC vdd

X1 AI0] B[O] carry-in CJO] carry-out_1 ONEBIT

X2 Al1] B[1] carry-out_1 (1] carry-out_2 ONEBIT
*

* Subcircuit Definitions

.subckt NAND i nl in2 out wp=10 wn=5
ML out inl vdd vdd P Wewp L=l mi n ad=0
M2 out in2 vdd vdd P Wewp L=l m n ad=0
MB out inl mdgnd NWw L=Imn as=0
M md in2 gnd gnd N Wewn L=l m n ad=0

CLOAD out gnd ‘wp*5. 7f’
. ends
*
.subckt ONEBIT inl in2 carry-in out carry-out
X1 inl in2 #1_nand NAND
X2 inl #1 nand 8 NAND
X3 in2 #1 nand 9 NAND
X4 8 9 10 NAND
X5 carry-in 10 hal f1 NAND
X6 carry-in halfl half2 NAND
X7 10 hal f1 13 NAND
X8 hal f2 13 out NAND
X9 halfl #1 nand carry-out NAND
. ENDS ONEBI T

*

* Stinmulus

UC carry-in VLD2A VHD2A D2A SI GNAMVE=1 | S=0
UA[0] A 0] VLD2A VHD2A D2A SI GNAME=2 | S=1
UA[1] Al 1] VLD2A VHD2A D2A SI GNAME=3 | S=1
UB[0] B[0] VLD2A VHD2A D2A SI GNAME=4 | S=1
UB[1] B[1] VLD2A VHD2A D2A SI GNAME=S | S=1
*

ucO c[0] vrefa2d a2d si gnane=10

ucl c[1l] vrefa2d a2d signane=11

uco carry-out 2 vrefa2d a2d signane=12
uci carry-in vrefa2d a2d si gnane=13

*

Sources and Stimuli: Replacing Sources With Digital Inputs
5-70

* Mbdel s

. MODEL N NMOS LEVEL=3 VTO=0.7 UO=500 KAPPA=.25 KP=30U
+ ETA=. 01 THETA=. 04 VMAX=2E5 NSUB=9E16 TOX=400

+ GAMVA=1.5 PB=0.6 JS=. 1M XJ=0. 5U LD=0. 1U NFS=1E1l1

+ NSS=2E10 RSH=80 CJ=.3M MJ=0.5 CIJSWE. 1N MJISW£0. 3

+ acnm=2 capop=4

*

. MODEL P PMOS LEVEL=3 VTO=-0.8 UO=150 KAPPA=.25 KP=15U
+ ETA=. 015 THETA=. 04 VMAX=5E4 NSUB=1. 8E16 TOX=400

+ GAMVA=. 672 PB=0.6 JS=. 1M XJ=0.5U LD=0. 15U NFS=1E11
+ NSS=2E10 RSH=80 CJ=.3M MJ=0.5 CJSWE. 1N MJISW£0. 3

+ acm=2 capop=4
*

* Default Digital Input Interface Mdel
. MODEL D2A U LEVEL=5 TI MESTEP=0. 1NS,

+ SONAME=0 SOTSWFINS SORLO = 15, SORH = 10K,
+ S2ZNAME=Xx S2TSWESNS S2RLO = 1K, S2RH = 1K

+ S3NAME=z S3TSWS5NS S3RLO = 1MEG S3RHI = 1MEG
+ SANAME=1 SATSWINS S4RLO = 10K, S4ARH = 60

VLD2A VLD2A 0 DC | o
VHD2A VHD2A 0 DC hi
*

* Default Digital Qutput Mddel (no “X' val ue)

. MODEL A2D U LEVEL=4 TI MESTEP=0. 1NS TI MESCALE=1
+ SONAME=0 SOVLO=-1 SOVHI = 2.7

+ SANAME=1 SAVLO= 1.4 SAVH =6.0

+ CLOAD=0. 05pf

VREFA2D VREFA2D 0 DC 0. 0V
. END

Sources and Stimuli: Replacing Sources With Digital Inputs

5-71

Figure 5-10 Digital Stimulus File Input

xF1LE: MOSPBIT SP - ADDER - 2 BIT ALL-NAND-GATE BINARY ADDER
[5-APRIL 19:12:43
5.0 F E TDBTL TR0
4 9 F - ALl
3.0 —————
i [\ 7] B0l
=R /) / T
10 E\““““‘ “/“‘ﬁ‘ii‘ﬁ‘/\‘“‘ “““‘/“ ““““‘E
'5o%x/k\ : . & T0ETL.TRD:
N] W
S S 3 R XTI
S S . y YT
7 E\\\\ | | \\\\\\J\\ I | I Y A | \\\\\/\\/\J\\E
5 0 F , E TDGTL TRO:
40 E /m\‘ = CARRY- N
: RN
?gﬁwww\ [[T\ A1 Eé@MﬂWJ
- B \ = [—
L0 i \pg/ f\#/ \#/ /\ o FLARII
Y B I | \TiM\E\ \[\L\I’\\‘]\\ L1 I | L1 “‘k‘\J,
0. 12 0N 24 ON 36 0N 48 0N 60 ON

Specifying a Digital Vector File

The digital vector file consists of three parts:

» Vector Pattern Definition section

« Waveform Characteristics sect
e Tabular Data section.

You can use a digital vector file in

Sources and Stimuli: Specifying a Digital Vector File

5-72

ion

HSPICE.

To incorporate this information into your simulation, include this line
in your netlist:

.VEC ‘digital _vector file’

The .VEC file must be a text file. If you transfer it between Unix and
Windows, use text mode.

A single .VEC statement should not reference more than four signal
names. Alphabetic characters in hexadecimal numbers must be
lower-case (for example, use f instead of F).

Vector Patterns

The Vector Pattern Definition section defines the vectors—their
names, sizes, signal direction, sequence or order for each vector
stimulus, and so on. It must occur first in the digital vector file. The
statements within this section (except the radix statement) can
appear in any order, and all keywords are case-insensitive.

A sample Vector Pattern Definition section follows:

RADI X 1111 1111

VNAME ABCDEFGH
IO 1111

TUNIT ns

These lines are required, and should be the first lines in a vector file:
 The RADIX line defines eight single-bit vectors.
« VNAME gives each vector a name.

» 10 determines which vectors are inputs, outputs, or bidirectional
signals. In this example, all eight are input signals.

« TUNIT indicates that the time unit for the tabular data to follow,
are in units of nanoseconds.

For an explanation of keywords, such as radix and vname, see
Defining Tabular Data on page 5-81.

Sources and Stimuli: Specifying a Digital Vector File
5-73

Radix Statement

The radix statement specifies the number of bits associated with
each vector. Valid values for the number of bits range from 1 to 4.

Table 5-23 Radix Syntax

bits Radix Number System Valid Digits
1 2 Binary 0,1

2 4 - 0-3

3 8 Octal 0-7

4 16 Hexadecimal 0-F

The file contains only one radix statement. It must be the first non-
comment line.

SYNTAX:
RADDX111111111111

EXAMPLE:

This example illustrates two 1-bit signals, followed by a 4-bit signal,
followed by one each 1-bit, 2-bit, 3-bit, and 4-bit signals, and finally
eight 1-bit signals.

: start of Vector Pattern Definition section
RADI X 1 1 4 1234 1111 1111

VNAME A B C[3:0] 19 1[8:7] I[6:4] 1[3:0] Ofr &6 &6 ™4
+ Q3 2 O

(Ol I 1 111l 0000 OO0

Sources and Stimuli: Specifying a Digital Vector File
5-74

Vname Statement

The vname statement defines the name of each vector. If you do not
specify vname, HSPICE assigns a default name to each signal: V1,
V2, V3, and so on. If you define more than one VNAME statement,
the last statement overrules the previous statement.

SYNTAX:

RADDX111111111111
VNAME V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

To concisely specify a range, or a bus, use square brackets and a
colon. Define a range as follows:

VNAME vector _nane[starting_index : ending_index]

In this range, vector_name is the name of the range. You can
associate a single name with multiple bits (such as bus notation).

The opening and closing brackets and the colon are required; they
indicate that this is a range. The vector name must correlate with the
number of bits available.

You can nest the bus definition inside other grouping symbols, such
as{}, O, [], and so on. The bus indices expand in the specified order.

EXAMPLE:

a[0: 3]

This example represents a0, al, a2, and a3, in that order. HSPICE
does not reverse the order to make a3 the first bit.

The bit order is MSB:LSB, which means most significant bit to least
significant bit. For example, you can represent a 5-bit bus such as:
{a4 a3 a2 al a0}, using this notation: a[4:0]. The high bit is a4, which
represents 2”4. It is the largest value, and therefore is the MSB.

Sources and Stimuli: Specifying a Digital Vector File
5-75

EXAMPLE 1:

If you specify:

RADI X 2 4

VNAME VA[0: 1] VB[4: 1]

HSPICE generates voltage sources with the following names:

VAO VAl VB4 VB3 VB2 VB1
* VAO and VB4 are the MSBs.

« VAl and VB1 are the LSBs.
EXAMPLE 2:
If you specify:

VNAME VA[[0:1]] VB<[4: 1]>

HSPICE generates voltage sources with the following names:
VA[0] VA[1] VB<4> VB<3> VB<2> VB<1>

EXAMPLE 3:

To specify a single bit of a bus:

VNAMVE VA[[2: 2]]

This range creates a voltage source named:
VA 2]

EXAMPLE 4:
This example generates signals named AO, Al, A2, ... A23:

RADI X 444444
VNAME A[0: 23]

Sources and Stimuli: Specifying a Digital Vector File

5-76

IO Statement

The io statement defines the type, for each vector. The line starts
with the io keyword, followed by a string of i, b, 0, or u definitions.
These definitions indicate whether each corresponding vector is an
input (i), bidirectional (b), output (0), or unused (u) vector.

Table 5-24 10 Syntax

Parameter | Description

Input, which HSPICE uses to stimulate the circuit.

(0]

Expected output, which HSPICE compares with the simulated outputs.

b

Bidirectional vector.

Unused vector, which HSPICE ignores.

SYNTAX:
IOl OB U

EXAMPLE:

« If you do not specify the io statement, HSPICE assumes that all
signals are input signals.

« If you define more than one io statement, the last statement
overrules previous statements.

ioi i 1 bbbb iiiioouu

Tunit Statement

The TUNIT statement defines the time unit in the digital vector file,
for PERIOD, TDELAY, SLOPE, TRISE, TFALL, and absolute time.

Sources and Stimuli: Specifying a Digital Vector File
5-77

SYNTAX:

TUNIT {fs]|ps|ns|us|ns}
Default value = ns bel ow

Table 5-25 TUNIT Syntax

Unit Description
fs femtosecond
ps picosecond
ns nanosecond
us microsecond
ms millisecond

« If you do not specify the tunit statement, the default time unit
value is ns.

« If you define more than one tunit statement, the last statement
overrules the previous statement.

EXAMPLE:

The TUNIT statement in this example specifies that the absolute
times in the Tabular Data section are 11.0ns, 20.0ns, and 33.0ns.
TUNI T ns

11.0 1000 1000

20.0 1100 1100
33.0 1010 1001 Period and Tskip Statenents

The PERIOD statement defines the time interval for the Tabular Data
section. You do not need to specify the absolute time at every time
point. If you use a PERIOD statement, without the TSKIP statement,
the Tabular Data section contains only signal values, not absolute
times. The TUNIT statement defines the time unit of the PERIOD.

SYNTAX:
PERI GD x

In this syntax, x represents the time interval.

Sources and Stimuli: Specifying a Digital Vector File

5-78

EXAMPLE 1:

In this example:

» The first row of the tabular data (1000 1000) is at time Ons.
 The second row (1100 1100) is at 10ns.
» The third row (1010 1001) is at 20ns.

radix 1111 1111
period 10
1000 1000
1100 1100
1010 1001

The tskip statement specifies to ignore the absolute time field in the
tabular data. You can then keep, but ignore, the absolute time field
of each row in the tabular data, when you use the period statement.

EXAMPLE 2:

If your netlist contains:

radi x 1111 1111
period 10

tskip

11.0 1000 1000
20.0 1100 1100
33.0 1010 1001

HSPICE ignores the absolute times 11.0, 20.0 and 33.0.

You might do this, for example, if the absolute times are not perfectly
periodic for testing reasons. Another reason might be that a path in
the circuit does not meet timing, but you might still use it as part of a
test bench. Initially, HSPICE writes to the vector file, using absolute
time. After you fix the circuit, you might want to use periodic data.

Sources and Stimuli: Specifying a Digital Vector File
5-79

Enable Statement

The ENABLE statement specifies the controlling signal(s) for
bidirectional signals. All bidirectional signals require an ENABLE
statement. If you specify more than one ENABLE statement, the last
statement overrules the previous statement, and HSPICE issues a
warning message:

[Warning]:[line 6] resetting enable signal to VWENB for
bit ' XYz

SYNTAX:

ENABLE control Ii ng_si gnal nane mask

In this syntax, controlling_signalname and mask define the
bidirectional signals to which ENABLE applies.

The controlling signal, for bidirectional signals, must be an input
signal, with a radix of 1. The bidirectional signals become output
when the controlling signal is at state 1 (or high). To reverse this
default control logic, start the control signal name with a tilde (~).

EXAMPLE:

In this example, the x and y signals are bidirectional, as defined by
the b in the io line.

» The first enable statement indicates that x (as defined by the
position of F) becomes output, when the a signal is 1.

« The second enable specifies that the y bidirectional bus becomes
output, when the a signal is 0.

radi x 144

io ibb

vnanme a X[3:0] y[3:0]
enable a 0 F O
enable ~a 0 O F

Sources and Stimuli: Specifying a Digital Vector File

5-80

Defining Tabular Data

Although the Tabular Data section generally appears last in a digital
vector file (after the Vector Pattern and Waveform Characteristics
definitions), this chapter describes it first, to introduce the definitions
of a vector.

SYNTAX:

The Tabular Data section defines (in tabular format) the values of the
signals, at specified times. Its general format is:

timel signal 1l valuel signal 2 val uel signal 3 valuel...
time2 signall val ue2 signal 2_val ue2 signal 3_val ue2. ..
time3 signal 1 _val ue3 signal 2_val ue3 signal 3_val ue3. ..

In this syntax, timex is the specified time, and signalx_valuex is the
values of specific signals at specific points in time. The set of values
for a particular signal (over all times) is a vector, which appears as a
vertical column in the tabular data and vector table. The set of all
signall_valuex constitutes one vector. Signal values can have any
of the legal states, described in the next section.

Rows in the Tabular Data section must appear in chronological order,
because row placement carries sequential timing information.

EXAMPLE:

10. 0 1000 0000
15.0 1100 1100
20.0 1010 1001
30.0 1001 1111

This example feature eight signals, so it has eight vectors. The first
signal (starting from the left) vector is [1 1 1 1]; the second vector is
[0 1 0 0]; and so on.

Sources and Stimuli: Specifying a Digital Vector File
5-81

Input Stimuli

HSPICE converts each input signal into a PWL (piecewise linear)
voltage source, and a series resistance. Table 5-26 shows the legal
states for an input signal.

Table 5-26 Input Stimuli States

Value Description

0 Drive to ZERO (gnd).

1 Drive to ONE (vdd).

Z,z Floating to HIGH IMPEDANCE.
X, X Drive to ZERO (gnd).

L Resistive drive to ZERO (gnd).
H Resistive drive to ONE (vdd).
U,u Drive to ZERO (gnd).

 FortheO, 1, X, x, U, and u states, HSPICE sets resistance to
Zero.

* For L or H states, the Out /Outz Statements on page 5-92 define

the resistance value.

 For Z or z states, the Triz Statement on page 5-93 defines the

resistance.

Sources and Stimuli: Specifying a Digital Vector File

5-82

Expected Output

HSPICE converts each output signal into a .DOUT statement in the
netlist. During simulation, HSPICE compares the actual results with
the expected output vector(s). If the states are different, an error
message appears. The legal states for expected outputs include:

Table 5-27 Expected Output Values

Value Description

0 Expect ZERO.

1 Expect ONE.

X, x Don't care.

U,u Don't care.

Zz Expect HIGH IMPEDANCE (don't care). Simulation evaluates Z, z as

don't care, because HSPICE cannot detect a high impedance state.

EXAMPLE:

The first line of the example below is a comment line, because of
the semicolon character.

The next line expects the output to be 1 for the first and fourth
vectors, while all others are expected to be low.

At 20 time units, HSPICE expects the first and second vectors to
be high, and the third and fourth to be low.

At 30 time units, HSPICE expects only the first vector to be high,
and all others low.

At 35 time units, HSPICE expects the output of the first two
vectors to be “don’t care”; it expects vectors 3 and 4 to be low.

O o000, start of tabul ar section data

Sources and Stimuli: Specifying a Digital Vector File
5-83

Verilog Value Format

HSPICE accepts Verilog sized format, to specify numbers:

<si ze> '<base fornmat> <nunber>

<si ze> specifies the number of bits, in decimal format.
<base f or mat > indicates:

binary ('b or 'B)

octal ("o or 'O)

hexadecimal ('h or 'H).

Valid <nunber > fields are combinations of the 0, 1, 2, 3, 4, 5, 6,
7,8,9, A, B, C, D, E, and F characters. Depending on what
<base f or mat > you choose, only a subset of these characters
might be legal.

You can also use unknown values (X) and high-impedance (Z) in the
<number> field. An X or Z sets four bits in the hexadecimal base,
three bits in the octal base, or one bit in the binary base.

If the most significant bit of a number is 0, X, or Z, HSPICE
automatically extends the number (if necessary), to fill the remaining
bits with 0, X, or Z, respectively. If the most significant bit is 1,
HSPICE uses 0 to extend it.

EXAMPLE:

4’ b1111
12’ hABx
32’ bz
8 hl

Sources and Stimuli: Specifying a Digital Vector File

5-84

This example specifies values for:

* 4-bit signal in binary

» 12-bit signal in hexadecimal

o 32-bit signal in binary

« 8-bit signal in hexadecimal

Equivalents of these lines, in non-Verilog format, are:
1111

AB XXXX
7777 7777 7777 7777 7777 7777 7777 7777

1000 0000

Periodic Tabular Data

Tabular data is often periodic, so you do not need to specify the
absolute time at every time point. When you specify the PERIOD
statement (see Tunit Statement on page 5-77), the Tabular Data
section omits the absolute times. For more information, see Tabular
Data on page 5-86.

EXAMPLE:

The PERIOD statement in this example sets the time interval to
10ns, between successive lines in the tabular data. This is a
shortcut, when you use the vectors in regular intervals, throughout
the entire simulation.

RADI X 1111 1111

VNAME ABCDEFGH

[OLLIT 1111

TUNIT ns

PERI GD 10

;. start of vector data section
1000 1000

1100 1100

1010 1001

Sources and Stimuli: Specifying a Digital Vector File
5-85

Tabular Data

The Tabular Data section defines the values of the input signals, at
specified times. The first column lists the time, followed by signal
values in the subsequent columns, in the order specified in the
vhame statement.

EXAMPLE:

11.0 1000 1000
20.0 1100 1100
33.0 1010 1001

This small table shows that:

* At 11.0 time units, the value for the first and fifth vectors is 1.

« At 20.0 time units, the first, second, fifth, and sixth vectors are 1.
« At 33.0 time units, the first, third, fifth, and eighth vectors are 1.

For more information about this section of the digital vector file, see
Defining Tabular Data on page 5-81.

Waveform Characteristics

The Waveform Characteristics section defines various attributes for
signals, such as the rise or fall time, the thresholds for logic high or
low, and so on. A sample Waveform Characteristics section follows:

TRI SE 0.3 137F 0000
TFALL 0.5 137F 0000
VIH 5.0 137F 0000
VIL 0.0 137F 0000

Sources and Stimuli: Specifying a Digital Vector File

5-86

The waveform characteristics options are based on a bit-mask. For
example:

 The TRISE (signal rise time) setting of 0.3ns applies to the first
four vectors, but not to the last four.

» The example does not show how many bits are in each of the first
four vectors, although the first vector is at least one bit.

« The fourth vector is four bits, because F is hexadecimal for binary
1111.

« All bits of the fourth vector have a rise time of 0.3ns, for the
constant you defined in TUNIT. This also applies to TFALL (fall
time), VIH (voltage for logic-high inputs), and VIL (voltage for
logic-low inputs).

Modifying Waveform Characteristics

This section describes how to modify waveform characteristics of
your circuit.

Tdelay, Idelay, and Odelay Statements

The TDELAY, IDELAY, and ODELAY statements define the delay
time of the signal, relative to the absolute time of each row in the
Tabular Data section.

« |IDELAY applies to the input signals.
 ODELAY applies to the output signals.
« TDELAY applies to both input and output signals.

SYNTAX:
TDELAY X

Sources and Stimuli: Specifying a Digital Vector File
5-87

The statement starts with a keyword (tdelay, idelay, or odelay),
followed by a delay value (x), and then a mask. The mask defines
the signals to which the delay applies. If you do not provide a mask,
the delay value applies to all signals.

The tunit statement defines the time unit of tdelay, idelay and odelay.
Normally, you need to use only the tdelay statement; use the idelay
and odelay statements only to specify different input and output
delay times, for bidirectional signals. HSPICE ignores idelay settings
on output signals (or odelay settings on input signals), and issues a
warning message.

You can specify more than one tdelay, idelay, or odelay statement.

« If you apply more than one tdelay (idelay, odelay) statement to a
signal, the last statement overrules the previous statements, and
HSPICE issues a warning.

* Ifyou do not specify the signal delays in a tdelay, idelay, or odelay
statement, HSPICE defaults to zero.

EXAMPLE:

This example does not specify the Tun T statement, so HSPICE uses
the default, ns, as the time unit for this example. The first ToELAY
statement indicates that all signals have the same delay time of
1.0ns. Subsequent TDELAY statements overrule the delay time of
some signals.

» The delay time for the V2 and Vx signals is -1.2.
« The delay time for the V4, V5[0:1], and V6[0:2] signals is 1.5.

« The input delay time for the V7[0:3] signals is 2.0, and the output
delay time is 3.0.

Sources and Stimuli: Specifying a Digital Vector File

5-88

RADI X 1 1 4 1234 11111111

IO1 1 oiiib iitiiiiii

VNAME V1 V2 VX[3:0] V4 V5[1:0] V6[0:2] V7[0: 3]
+ V8 V9 V10 V11 V12 V13 V14 V15

TDELAY 1.0

TDELAY -1.2 0 1 F 0000 00000000

TDELAY 1.5 0 0 O 1370 00000000

| DELAY 2.0 O O O OOOF 00000000

ODELAY 3.0 0 0 O OOOF 00000000

Slope Statement
» The slope statement specifies the fall times for the input signal.

 The tunit statement defines the time unit.

To specify the signals to which the slope applies, use a mask.

SYNTAX:

SLOPE x
Default value = 0.1ns

In this syntax, x is the input signal rise/fall time.

« If you do not specify the slope statement, the default slope value
Is 0.1 ns.

» If you specify more than one slope statement, the last statement
overrules the previous statements, and HSPICE issues a
warning message.

The slope statement has no effect on the expected output signals.
You can specify the optional trise and tfall statements, to overrule the
rise time and fall time of a signal.

Sources and Stimuli: Specifying a Digital Vector File
5-89

EXAMPLE:

In the first example, the rising and falling times of all signals are
1.2 ns.

The second example specifies a rising/falling time of 1.1 ns for
the first, second, sixth, and seventh signals.

SLOPE 1.2
SLOPE 1.1 1100 0110

Trise Statement

The TRISE statement specifies the rise time of each input signal for
which the mask applies. The TUNIT statement defines the time unit
of TRISE.

SYNTAX:
TRI SE X

In this syntax, x is the input signal rise time.

If you do not use any trise statement to specify the rising time of
the signals, HSPICE uses the value defined in the slope
statement.

If you apply more than one trise statement to a signal, the last
statement overrules the previous statements, and HSPICE
ISsues a warning message.

TRISE statements have no effect on the expected output signals.

Sources and Stimuli: Specifying a Digital Vector File

5-90

EXAMPLE:

In the example below, the first TRISE statement assigns a rise time
of 0.3 time units to all vectors. The second statement assigns a rise
time of 0.5 time units, overriding the older setting of 0.3 in at least
some of the bits in vectors 2, 3, and 4 through 7. Vectors 8 through
11 have a rise time of 0.8 time units, based on the final TRISE
Statement.

TRI SE 0. 3
TRISE 0.5 0 1 1 137F 00000000
TRISE 0.8 0 0 O 0000 11110000

Tfall Statement

The TFALL statement specifies the falling time of each input signal
for which the mask applies.The TUNIT statement defines the time
unit of TFALL.

SYNTAX:
TFALL x

In this syntax, x is the input signal fall time.

« If you do not specify the falling time of the signals in a tfall
statement, HSPICE uses the value defined in the slope
statement.

« If you use more than one tfall statement for a signal, the last
statement over-rules previous statements. HSPICE issues a
warning.

TFALL statements have no effect on the expected output signals.

Sources and Stimuli: Specifying a Digital Vector File
5-91

EXAMPLE:
As with the TRISE example:

The first TFALL statement applies a 0.5 time unit fall time
globally.

The second TFALL statement applies a fall time of 0.3 time units
to vectors 2, 3, and 4 through 7.

The third TFALL statement applies a fall time of 0.9 time units to
vectors 8 to 11.

TFALL 0.5
TFALL 0.3 0 1 1 137F 00000000
TFALL 0.9 0 O O 0000 11110000

Out /Outz Statements

The out and outz keywords are equivalent, and specify output
resistance for each signal (for which the mask applies); out (or outz)
applies only to input signals.

If you do not specify the output resistance of a signal, in an out
(or outz) statement, HSPICE uses the default (zero).

If you specify more than one out (or outz) statement for a signal,
the last statement overrules the previous statements, and
HSPICE issues a warning message.

The out (or outz) statements have no effect on the expected output

signals.

SYNTAX:

QUT x (or QUTZ x)
Default value=0

In this syntax, x is the output resistance for an input signal.

Sources and Stimuli: Specifying a Digital Vector File

5-92

EXAMPLE:

The first OUT statement in this example creates a 15.1 ohm resistor,
to place in series with all vector inputs. The next OUT statement sets
the resistance to 150 ohms for vectors 1 to 3. The OUTZ statement
changes the resistance to 50.5 ohms for vectors 4 through 7.

aur 15.1
QUT 150 1 1 1 0000 00000000
QUTZ 50.5 0 0 0O 137F 00000000

Triz Statement

The triz statement specifies the output impedance, when the signal
(for which the mask applies) is in tristate; triz applies only to the input
signals.

» If you do not specify the tristate impedance of a signal, in a triz
statement, HSPICE assumes 1000M.

« If you apply more than one triz statement to a signal, the last
statement overrules the previous statements, and HSPICE
Issues a warning.

TRIZ statements have no effect on the expected output signals.

SYNTAX:

TRI Z X
Default value = 1000Meg

In this syntax, x is the output impedance for an input signal.

EXAMPLE:

» The first TRIZ statement sets the high impedance resistance
globally, at 15.1 Mohms.

» The second TRIZ statement increases the value to 150 Mohms,
for vectors 1 to 3.

Sources and Stimuli: Specifying a Digital Vector File
5-93

The last TRIZ statement increases the value to 50.5 Mohms, for
vectors 4 through 7.

TRI Z 15. 1Meg
TRIZ 150Meg 1 1 1 0000 00000000
TRIZ 50.5Meg O O O 137F 00000000

VIH Statement

The VIH statement specifies the logic-high voltage, for each input
signal to which the mask applies.

If you do not specify the logic high voltage of the signals, in a vih
statement, HSPICE assumes 3.3.

If you use more than one vih statement for a signal, the last
statement over-rules previous statements. HSPICE issues a
warning.

VIH statements have no effect on the expected output signals.

SYNTAX:

VI H X
Default value= 3.3

In this syntax, x is the logic-high voltage for an input signal.

EXAMPLE:

The first VIH statement sets all input vectors to 5V, when they are
high.

The last VIH statement changes the logic-high voltage from 5V to
3.5V, for the last eight vectors.

VIH 5.0
VIH 3.5 0 0 0 0000 11111111

Sources and Stimuli: Specifying a Digital Vector File

5-94

VIL Statement

The VIL statement specifies the logic-low voltage, for each input
signal to which the mask applies.

« If you do not specify the logic-low voltage of the signals, in a vil
statement, HSPICE assumes 0.0.

« If you apply more than one vil statement to a signal, the last
statement overrules the previous statements, and HSPICE
Issues a warning.

VIL statements have no effect on the expected output signals.

SYNTAX:

VIL X
Default value= 0.0

where x is the logic-low voltage for an input signal.

EXAMPLE:

« The first VIL statement sets the logic-low voltage to 0V, for all
vectors.

« The second VIL statement changes the voltage to 0.5, for the last
eight vectors.

VIL 0.0
VIL 0.5 0 0 0 0000 11111111
VREF Statement

Similar to the tdelay statement, the VREF statement specifies the
name of the reference voltage, for each input vector to which the
mask applies. VREF applies only to input signals.

Sources and Stimuli: Specifying a Digital Vector File
5-95

« If you do not specify the reference voltage name of the signals,
in a vref statement, HSPICE assumes 0.

« If you apply more than one vref statement, the last statement
overrules the previous statements, and HSPICE issues a
warning.

VREF statements have no effect on the output signals.

SYNTAX:

VREF vx
Default value=0

where X is the reference voltage for each input vector.

EXAMPLE:

VNAME v1 v2 v3 v4 v5[1:0] v6[2:0] v7[0:3] v8 v9 v10
VREF 0

VREF 0 111 137F 000

VREF vss 0 O 0 0000 111

When HSPICE implements these statements into the netlist, the
voltage source realizes v1.:

vli Vi Oopw(......)

as well as v2, v3, v4, v5, v6, and V7.
However, v8 is realized by

V8 V8 vss pwW (......)

v9 and v10 use a syntax similar to v8.

Sources and Stimuli: Specifying a Digital Vector File

5-96

VTH Statement

Similar to the tdelay statement, the VTH statement specifies the logic
threshold voltage, for each output signal to which the mask applies.
The threshold voltage determines the logic state of output signals,
for comparison with the expected output signals.

* If you do not specify the threshold voltage of the signals, in a vth
statement, HSPICE assumes 1.65.

« If you apply more than one vth statement to a signal, the last
statement overrules the previous statements, and HSPICE
Issues a warning.

VTH statements have no effect on the input signals.

SYNTAX:

VTH X
Default value = 1.65

In this syntax, x is the logic threshold voltage for an output signal.

EXAMPLE:

« Thefirst VTH statement sets the logic threshold voltage at 1.75V.

* The next line changes that threshold to 2.5V, for the first 7
vectors.

» The last line changes that threshold to 1.75V, for the last 8
vectors.
VTH 1. 75

VIH2.5 1 1 1 137F 00000000
VIH1.75 0 0 0 0000 11111111

Note: All of these examples apply the same vector pattern, and both
output and input control statements, so the vectors are all
bidirectional.

Sources and Stimuli: Specifying a Digital Vector File
5-97

VOH Statement

The VOH statement specifies the logic-high voltage, for each output
signal to which the mask applies.

« If you do not specify the logic-high voltage, in a voh statement,
HSPICE assumes 3.3.

« If you apply more than one voh statement to a signal, the last
statement overrules the previous statements, and HSPICE
Issues a warning.

VOH statements have no effect on input signals.

SYNTAX:

VOH X
Default value= 3.3

X is the logic-high voltage for an output signal.

EXAMPLE:

« The first line tries to set a logic-high output voltage of 4.75V, but
it is redundant.

« The second line changes the voltage level to 4.5V, for the first
seven vectors.

» The last line changes the last eight vectors to a 3.5V logic-high
output.

These second and third lines completely override the first VOH
Sstatement.

VOH 4. 75
VOH 4.5 1 1 1 137F 00000000
VOH 3.5 0 0 0 0000 11111111

Note: If you do not define either voh or vol, HSPICE uses vth (default
or defined).

Sources and Stimuli: Specifying a Digital Vector File

5-98

VOL Statement

The VOL statement specifies the logic-low voltage, for each output
signal to which the mask applies.

If you do not specify the logic-low voltage, in a vol statement,
HSPICE assumes 0.0.

If you apply more than one vol statements to a signal, the last
statement overrules the previous statements, and HSPICE
Issues a warning.

VOL statements have no effect on input signals.

Note: If you do not define either VOH or VOL, then HSPICE uses

VTH (default or defined).

SYNTAX:

VOL X
Default value= 0.0

X is the logic-low voltage for an output signal.

EXAMPLE:

The first VOL statement below sets the logic-low output to OV.

The second VOL statement sets the output voltage to 0.2V, for
the fourth through seventh vectors.

The last statement increases the voltage further to 0.5V, for the
first three vectors.

VOL 0.0
VOL 0.2 0 O O 137F 00000000
VOL 0.5 1 1 1 0000 00000000

Sources and Stimuli: Specifying a Digital Vector File
5-99

Comment Lines

Any line in a vector file that begins with a semi-colon (;) is a comment
line. Comments can also start at any point along a line. HSPICE
ignores characters after a semi-colon.

EXAMPLE:

: This is a comment |ine
radix 1 1 4 1234 ; This is aradix |line

Continuing a Line

As in netlists, any line in a vector file that starts with a plus sign (+)
IS a continuation from the previous line.

Digital Vector File Example

An example of a vector pattern definition follows:

; specifies # of bits associated with each vector
radix 1 2 444

rkkkkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkkx
’

; defines nane for each vector. For nulti-bit vectors,
; innernost [] provide the bit index range, NSB:LSB
vnanme v1 va[[1l:0]] vb[1l2:1]

;actual signal nanmes: vl1, va[O0], va[l], vbl ... vbl2

rkkkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkx
’

; defines vector as input, output, or bi-directional
io i o bbb
; defines time unit

tunit ns
ckkkkkh kA Ak Kk hhkkkhhkkkkhkkkkhhkkkhkhkkkkhkkkkkhkhkxk k k%

; vbl2-vb5 are out put when ‘v1' is ‘high
enable vl 0 O FFO

; vb4-vbl are output when ‘vl is ‘| ow
enable ~v1 0 O OOF

ERE 3k kS Sk S Sk Sk Sk S S R R Sk Ik S S S S b S R Rk S S bk S kI

Sources and Stimuli: Specifying a Digital Vector File

5-100

; all signals have a delay of 1 ns

; Note: do not put the unit (such as ns) here again,
; because HSPICE nultiplies this value by the unit

; specified in the ‘“tunit’ line.

tdelay 1.0

; val and vaO signals have 1.5ns del ays

tdelay 1.5 0 3 000

rkkkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkkx
’

; specify input rise/fall tinmes (if you want different

; rise/fall times, use the trise/tfall statenent.)

; Note: do not put the unit (such as ns) here again,
; because HSPICE nultiplies this value by the unit

; specified in the “tunit’ line.

sl ope 1.2

rkkkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhk*kx
’

; specify the logic ‘high” voltage for input signals
vih 3.3 1 0 000

vih 5.0 0 0 FFF

; to specify logic low, use ‘vil’

rkkkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkhkkx
’

cva & vb switch from‘lo” to ‘hi’ at 1.75 volts
vth 1.75 0 1 FFF

CRE 3k S Sk S S Sk kS S R R Sk Sk S S S b S R Rk S S bk S

: tabul ar data section
10.0 1 3 FFF
20.0 0 2 AFF
30.0 1 O 888

Sources and Stimuli: Specifying a Digital Vector File

5-101

Sources and Stimuli: Specifying a Digital Vector File
5-102

Parameters and Functions

Parameters are similar to variables, which most programming
languages use. They hold a value that you either assign when you
create your circuit design, or the simulation calculates, based on
circuit solution values. Parameters can store static values for a
variety of quantities (resistance, source voltage, rise time, and so
on). You can also use them in sweep or statistical analysis.

This chapter describes how to use parameters within a HSPICE
netlist:

» Using Parameters in Simulation (.PARAM)
» Using Algebraic Expressions
e Built-In Functions

 Parameter Scoping and Passing

Parameters and Functions:
6-1

Using Parameters in Simulation (.PARAM)

Defining Parameters

Parameters in HSPICE are names that you associate with numeric
values (see .PARAM Statement on page 3-41). You can use any of
these methods to define parameters:

Table 6-1 .PARAM Syntax

Parameter Description
Simple assignment .PARAM <SimpleParam> = le-12
Algebraic definition .PARAM <AlgebraicParam> = ‘SimpleParam*8.2’

SimpleParam excludes the output variable.

You can also use algebraic parameters in .PRINT and .PROBE
statements, and in .PLOT, and .GRAPH statements. For example:

.PRINT AlgebraicParam=par('algebraic expression’)

You can use the same syntax for .PROBE, .PLOT, and .GRAPH
statements. See Using Algebraic Expressions on page 6-8.

User-defined function .PARAM <MyFunc(x, y)> = ‘Sgrt((x*x)+(y*y))’

Subcircuit default .SUBCKT <SubName> <ParamDefName> = <Value>
.MACRO <SubName> <ParamDefName> = <Value>

Predefined analysis .PARAM <mcVar> = Agauss(1.0,0.1)
function (see Statistical Analysis and Optimization on page 12-1).

.MEASURE statement | .MEASURE <DC | AC | TRAN> result TRIG
+

+ TARG ... <GOAL = val> <MINVAL = val>
+ <WEIGHT = val> <MeasType> <MeasParam>

(see Specifying User-Defined Analysis (MEASURE) on page 7-39).

.PRINT|.PROBE]| .PRINT|.PROBE|.PLOT|.GRAPH <DCJAC|TRAN> outParam =
.PLOT|.GRAPH Par_Expression

Parameters and Functions: Using Parameters in Simulation (.PARAM)
6-2

A parameter definition in HSPICE always uses the last value found
in the input netlist (subject to local versus global parameter rules).

The definitions below assign a value of 3 to the DupParam

parameter.

. PARAM DupParam = 1

: PARAM DupParam = 3

HSPICE assigns 3 as the value for all instances of DupParam,
including instances that are earlier in the input than the .PARAM
DupParam = 3 statement.

All parameter values in HSPICE are IEEE double floating point

numbers. Parameter resolution order is:

1. Resolve all literal assignments.

2. Resolve all expressions.

3. Resolve all function calls.

Table 6-2 shows the parameter passing order.

Table 6-2 Parameter Passing Order

.OPTION PARHIER = GLOBAL

.OPTION PARHIER = LOCAL

Analysis sweep parameters

Analysis sweep parameters

.PARAM statement (library)

.SUBCKT call (instance)

.SUBCKT call (instance)

.SUBCKT definition (symbol)

.SUBCKT definition (symbol)

.PARAM statement (library)

Parameters and Functions: Using Parameters in Simulation (.PARAM)

6-3

Assigning Parameters
You can assign the following types of values to parameters:

» Constant real number.

» Algebraic expression of real values.
* Predefined function.

» Function that you define.

« Circuit value.

* Model value.

To invoke the algebraic processor, enclose a complex expression in
single quotes. A simple expression consists of one parameter name.

The parameter keeps the assigned value, unless:
« Later definition changes its value, or
» Algebraic expression assigns a new value during simulation.

HSPICE does not warn you, if they reassign a parameter.

SYNTAX:

. PARAM <Par aniNane> <Real Nunber >
. PARAM <Par anNane> ' <Expression> $ Quotes are mandatory
. PARAM <Par amNanel> = <ParamNanme2> $ Cannot be recursive!

EXAMPLE 1:(Numerical)

. PARAM Ter nval ue = 19
rTermBit0 O TernVal ue
rTermBitl O TernVal ue

EXAMPLE 2:(Expression)

. PARAM Pi = ' 355/113

. PARAM Pi 2 = '2*Pi’

. PARAM npRati o = 2.1

. PARAM nW dt h = 3u

. PARAM pW dt h = 'nWdth * npRatio’

Mol ... <pModel Name> W= pWdth
nW dt h

vMhl ... <nModel Name> W =

Parameters and Functions: Using Parameters in Simulation (.PARAM)
6-4

Inline Parameter Assignments

To define circuit values, using a direct algebraic evaluation:

rl nl 0O R="1k/sqrt(HERTZ)' $ Resistance for frequency

Parameters in Output

To use an algebraic expression as an output variable in

a .PRINT, .PLOT, .PROBE .GRAPH, or MEASURE statement, use
the PAR keyword (see Simulation Output on page 7-1 for more
information about simulation output).

EXAMPLE:
.PRINT DC v(3) gain = PAR(‘Vv(3)/v(2)’') PAR(‘v(4)/v(2)’)

User-Defined Function Parameters

You can define a function that is similar to the parameter assignment,
but you cannot nest the functions more than two deep.

The format of a function is:

funcnanel(argl[,arg2...]) = expressionl
+ [funcnhane2(argl[,arg2...]) = expression2] off

An expression can contain parameters that you did not define.

A function must have at least one argument, and can have up to
20 (and in many cases, more than 20) arguments.

You can redefine functions.

Table 6-3 funcname Syntax
Parameter Description
funcname Specifies the function name. This parameter must be distinct from array
names and built-in functions. In subsequently defined functions, all
embedded functions must be previously defined.
argl, arg2 Specifies variables used in the expression.
off Voids all user-defined functions.

Parameters and Functions: Using Parameters in Simulation (.PARAM)
6-5

EXAMPLE:

f(a, b) = PONa,2)+a*b g(d) = SQRT(d)
+ h(e) = e*f(1,2)-g(3)

SYNTAX:
. PARAM <Par amNane>(<pv1>[, <pv2>...]) = ' <Expression>’

EXAMPLE:

. PARAM Cent ToFar (c) = "(((c*9)/5)+32)’
. PARAM F(pl, p2) = ' Log(Cos(pl)*Sin(p2))’
. PARAM SgrdProd (a,b) ="' (a*a)*(b*b)’

Subcircuit Default Parameter Definitions

When you use hierarchical sub-circuits, you can pick default values
for circuit elements. You typically use defaults in cell definitions, to
simulate the circuit using typical values (see Using Subcircuits on
page 3-57).

SYNTAX:
. SUBCKT <SubName> <Pi nLi st> [<SubDef aul t sLi st >]

In this syntax, <SubDefaultsList> is <SubParam1> = <Expression>
[<SubParam2> = <Expression> ...]

EXAMPLE:

This example implements an inverter that uses a Strength
parameter. By default, the inverter can drive three devices. Enter a
new value for the Strength parameter in the element line, to select
larger or smaller inverters for the application.

.SUBCKT Inv ay Strength = 3
Mpl <MosPi nLi st> pMosMod L
Mh1l <MbsPi nLi st> nMosMod L

. ENDS

1.2u W= "Strength * 2u’
1.2u W= "Strength * 1u’

Parameters and Functions: Using Parameters in Simulation (.PARAM)
6-6

xInvO a y0 I nv $ Default devices: p
devi ce = 6u,
$ n device = 3u
5 $ p device = 10u, n device
1 $ pdevice = 2u, n device

5u
1u

xlnvl a yl Inv Strength
xlnv2 a y2 Inv Strength

Predefined Analysis Function

HSPICE includes specialized analysis types, such as Optimization
and Monte Carlo, that require a way to control the analysis. For
definitions of the parameters for these analysis types, see Statistical
Analysis and Optimization on page 12-1.

Measurement Parameters

.MEASURE statements produce a measurement parameter. The
rules for measurement parameters are the same as for standard
parameters, except that measurement parameters are defined in
a .MEASURE statement, not in a .PARAM statement. For a
description of the .MEASURE statement, see Specifying User-
Defined Analysis (MEASURE) on page 7-39.

.PRINT|.PROBE|.PLOT|.GRAPH Parameters

.PRINT|.PROBE|.PLOT|.GRAPH statements in HSPICE produce a
print parameter. The rules for print parameters are the same as the
rules for standard parameters, except that you define the parameter
directly in a .PRINT|.PROBE|.PLOT|.GRAPH statement, not in

a .PARAM statement.

Parameters and Functions: Using Parameters in Simulation (.PARAM)
6-7

EXAMPLE:

3
par ("p1*5")

.print pl
.print p2

You can use pl and p2 as parameters in netlist. The pl value is 3;
the p2 value is 15.

For more information about the .PRINT|.PROBE|.PLOT|.GRAPH
statements, see Displaying Simulation Results on page 7-4.

Multiply Parameter

The most basic subcircuit parameter, in HSPICE, is the M (multiply)
parameter. For a description of this parameter, see M (Multiply)
Parameter on page 3-58.

Using Algebraic Expressions?

In HSPICE, an algebraic expression, with quoted strings, can
replace any parameter in the netlist.

In HSPICE, you can then use these expressions as output variables
in .PLOT, .PRINT, and .GRAPH statements. Algebraic expressions
can expand your options in an input netlist file.

Some uses of algebraic expressions are:

e Parameters:

.PARAM X = ’y+3

1.Synopsys HSPICE uses double-precision numbers (15 digits) for expressions, user-defined parameters, and sweep
variables. For better precision, use parameters (instead of constants) in algebraic expressions, because constants are
only single-precision numbers (7 digits).

Parameters and Functions: Using Algebraic Expressions

6-8

* Functions:
. PARAM rho(leff,weff) = "'2+*| eff*weff-2u’
« Algebra in elements:
RL10Tr = ABS(v(1)/i(nml))+10’
« Algebra in . MEASURE Statements:
. MEAS vimax MAX V(1)
. MEAS i max MAX | (qg2)
. MEAS i vmax PARAM = ’ vimax*i max
« Algebra in output statements:
. PRI NT conductance = PAR(‘i (nl)/v(22)")

The basic syntax for using algebraic expressions for output is:

PAR(‘ al gebrai c expression’)

In addition to using quotations, you must define the expression
inside the PAR() statement, for output.The continuation character
for quoted parameter strings, in HSPICE, is a double backslash (\\).
(Outside of quoted strings, the single backslash, \, is the continuation
character.)

Parameters and Functions: Using Algebraic Expressions
6-9

Built-In Functions

In addition to simple arithmetic operations (+, -, *, /), HSPICE
provides several built-in functions, listed in Table 6-4, that you can

use in expressions:

Table 6-4 Synopsys HSPICE Built-in Functions (Sheet 1 of 3)

HSPICE Function Class | Description

Form

sin(x) sine trig Returns the sine of x (radians)

cos(X) cosine trig Returns the cosine of x (radians)

tan(x) tangent trig Returns the tangent of x (radians)

asin(x) arc sine trig Returns the inverse sine of x (radians)

acos(x) arc cosine trig Returns the inverse cosine of x (radians)

atan(x) arc tangent trig Returns the inverse tangent of x (radians)

sinh(x) hyperbolic trig Returns the hyperbolic sine of x (radians)
sine

cosh(x) hyperbolic trig Returns the hyperbolic cosine of x (radians)
cosine

tanh(x) hyperbolic trig Returns the hyperbolic tangent of x (radians)
tangent

abs(x) absolute math Returns the absolute value of x: |X|
value

sqrt(x) square root math Returns the square root of the absolute value of x:

sqrt(-x) = -sqrt(|x|)

pow(X,y) absolute math Returns the value of x raised to the integer part of
power y: X(integer part of y)

pwr(X,y) signed power | math Returns the absolute value of X, raised to the y

power, with the sign of x: (sign of x)|x|¥

log(x) natural math Returns the natural logarithm of the absolute
logarithm value of x, with the sign of x: (sign of x)log(|x|)

l0g10(x) base 10 math Returns the base 10 logarithm of the absolute
logarithm value of x, with the sign of x: (sign of x)log(|X|)

Parameters and Functions: Built-In Functions

6-10

Table 6-4 Synopsys HSPICE Built-in Functions (Sheet 2 of 3)

HSPICE Function Class | Description

Form

exp(x) exponential | math | Returns e, raised to the power x: ¥

db(x) decibels math Returns the base 10 logarithm of the absolute
value of x, multiplied by 20, with the sign of x: (sign
of x)20log1o(]X])

int(x) integer math Returns the integer portion of x. The fractional
portion of the number is lost.

nint(x) integer math Rounds x up or down, to the nearest integer.

sgn(x) return sign math Returns -1 if x is less than O.
Returns 0 if x is equal to 0.
Returns 1 if x is greater than 0

sign(x,y) transfer sign | math Returns the absolute value of x, with the sign of y:
(sign of y)|X|

min(x,y) smaller oftwo | control | Returns the numeric minimum of x and y

args
max(X,y) larger of two | control | Returns the numeric maximum of x and y
args
val(element) | getvalue variou | Returns a parameter value for a specified
S element. For example, val(rl) returns the

resistance value of the rl resistor.

val(element. get value variou | Returns a value for a specified parameter of a

parameter) S specified element. For example, val(rload.temp)
returns the value of the temp (temperature)
parameter for the rload element.

val(model_ get value variou | Returns a value for a specified parameter of a

type:model_n S specified model of a specific type. For example,

ame.model_p val(nmos:mosL1.rs) returns the value of the rs

aram) parameter for the mos1 model, which is an nmos
model type.

Iv element variou | Returns various elementvalues during simulation.

(<Element>) | templates S See Element Template Output on page 7-38 for

or
Ix
(<Element>)

more information.

Parameters and Functions: Built-In Functions
6-11

Table 6-4 Synopsys HSPICE Built-in Functions (Sheet 3 of 3)

HSPICE Function Class | Description
Form
v(<Node>), circuit output | variou | Returns various circuit values during simulation.
i(<Element>). | variables S See DC and Transient Output Variables on
page 7-23 for more information.
[cond] ?x:y ternary Returns x if cond is not zero. Otherwise, returns y.
operator .para x=[condition] ?y:z
< relational Returns 1 if the left operand is less than the right
operator operand. Otherwise, returns 0.
(less than) .para x=y<z (y less than z)
<= relational Returns 1 if the left operand is less than or equal
operator (less to the right operand. Otherwise, returns 0.
than or equal) .para x=y<=z (y less than or equal to z)
> relational Returns 1 if the left operand is greater than the
operator right operand. Otherwise, returns O.
(greater than) .para x=y>z (y greater than z)
>= relational Returns 1 if the left operand is greater than or
operator equal to the right operand. Otherwise, returns 0.
(greater than .para x=y>=z (y greater than or equal to z)
or equal)
== equality Returns 1 if the operands are equal. Otherwise,
returns 0.
.para x=y==z (y equal to z)
I= inequality Returns 1 if the operands are not equal.
Otherwise, returns 0.
.para x=y!=z (y not equal to z)
&& Logical AND Returns 1 if neither operand is zero. Otherwise,
returns 0. .para x=y&&z (y AND z)
Il Logical OR Returns 1 if either or both operands are not zero.
Returns 0 only if both operands are zero.
.para x=y||z (y OR 2)

Parameters and Functions: Built-In Functions

6-12

EXAMPLE:

. paraneters pl=4 p2=5 p3=6

ri 1 0 value=pl?p2+l:p3

HSPICE reserves the variable names listed in Table 6-5 on page 6-
13, for use in elements such as E, G, R, C, and L. You cannot use
them for any other purpose in your netlist (for example, in .PARAM
statements).

Table 6-5 Synopsys HSPICE Special Variables

HSPICE Form | Function Class Description

time current control Uses parameters to define the current simulation
simulation time, during transient analysis.
time
current control Uses parameters to define the current simulation
circuit temperature, during transient/temperature
temperature analysis.
current control Uses parameters to define the frequency, during
simulation AC analysis.
frequency

Parameter Scoping and Passing

If you use parameters to define values in sub-circuits, you need to
create fewer similar cells, to provide enough functionality in your
library. You can pass circuit parameters into hierarchical designs,
and assign different values to the same parameter within individual
cells, when you run simulation.

For example, if you use parameters to set the initial state of a latch
In its subcircuit definition, then you can override this initial default in
the instance call. You need to create only one cell, to handle both
initial state versions of the latch.

Parameters and Functions: Parameter Scoping and Passing
6-13

You can also use parameters to define the cell layout. For example,
you can use parameters in a MOS inverter, to simulate a range of
inverter sizes, with only one cell definition. Local instances of the cell
can assign different values to the size parameter for the inverter.

In HSPICE, you can also perform Monte Carlo analysis or
optimization on a cell that uses parameters.

How you handle hierarchical parameters depends on how you
construct and analyze your cells. You can construct a design in
which information flows from the top of the design, down into the
lowest hierarchical levels.

« To centralize the control at the top of the design hierarchy, set
global parameters.

« Toconstruct a library of small cells that are individually controlled
from within, set local parameters and build up to the block level.

This section describes the scope of parameter names, and how
HSPICE resolves naming conflicts between levels of hierarchy.

Library Integrity

Integrity is a fundamental requirement for any symbol library. Library
integrity can be as simple as a consistent, intuitive name scheme, or
as complex as libraries with built-in range checking.

Library integrity might be poor if you use libraries from different
vendors in a circuit design. Because names of circuit parameters are
not standardized between vendors, two components can include the
same parameter name for different functions. For example, one
vendor might build a library that uses the name Tau as a parameter
to control one or more subcircuits in their library. Another vendor
might use Tau to control a different aspect of their library. If you set
a global parameter named Tau to control one library, you also modify
the behavior of the second library, which might not be the intent.

Parameters and Functions: Parameter Scoping and Passing

6-14

If the scope of a higher-level parameter is global to all sub-circuits at
lower levels of the design hierarchy, higher-level definitions override
lower-level parameter values with the same names. The scope of a
lower-level parameter is local to the subcircuit where you define the
parameter (but global to all subcircuits that are even lower in the
design hierarchy). Local scoping rules in HSPICE prevent higher-
level parameters from overriding lower-level parameters of the same
name, when that is not desired.

Reusing Cells

Parameter name problems also occur if different groups collaborate
on a design. Global parameters prevail over local parameters, so all
circuit designers must know the names of all parameters, even those
used in sections of the design for which they are not responsible.
This can lead to a large investment in standard libraries. To avoid this
situation, use local parameter scoping, to encapsulate all information
about a section of a design, within that section.

Creating Parameters in a Library

To ensure that the input netlist includes critical, user-supplied
parameters when you run simulation, you can use “illegal defaults"—
that is, defaults that cause the simulator to abort if you do not supply
overrides for the defaults.

If a library cell includes illegal defaults, you must provide a value for
each instance of those cells. If you do not, the simulation aborts.

For example, you might define a default MOSFET width of 0.0.
HSPICE aborts, because MOSFET models require this parameter.

Parameters and Functions: Parameter Scoping and Passing
6-15

EXAMPLE 1:

* Subcircuit default definition

.SUBCKT Inv AYWd =0 $ Inherit illegal val ues by default
npl <NodelLi st> <Mbdel > L lu W= "Wd*2
m1 <NodelLi st > <Mbdel > L lu W= wd

. ENDS

* I nvoke synbols in a design
x1 A Y1l Inv $ Bad! No w dths specified
x2 AY2 Inv Wd = 1u $ Overridesillegal value for Wdth

This simulation aborts on the x1 subcircuit instance, because you
never set the required Wid parameter on the subcircuit instance line.
The x2 subcircuit simulates correctly. Additionally, the instances of
the Inv cell are subject to accidental interference, because the Wid
global parameter is exposed outside the domain of the library.
Anyone can specify an alternative value for the parameter, in another
section of the library or the circuit design. This might prevent the
simulation from catching the condition on x1.

EXAMPLE 2:

In this example, the name of a global parameter conflicts with the
internal library parameter named Wid. Another user might specify
such a global parameter, in a different library. In this example, the
user of the library has specified a different meaning for the Wid
parameter, to define an independent source.

.Paramwd = 5u $ Default Pulse Wdth for source
vl Pulsed O Pulse (Ov 5v Ou 0.1u 0.1u Wd 10u)

* Subcircuit default definition

.SUBCKT Inv AYWd =0 $ Inherit illegals by default
npl <NodelList> <Mbdel> L = 1lu W= "Wd*2’

M1l <NodeLi st> <Moddel> L = 1lu W= Wd

. Ends
* I nvoke synbols in a design
x1 A Y1l Inv $ Incorrect wi dth!

x2 AY2 Inv Wd = 1u $ Incorrect! Both x1 and x2
$ simulate with npl = 10u and
$ M1 = 5u instead of 2u and 1u.

Parameters and Functions: Parameter Scoping and Passing

6-16

Under global parameter scoping rules, simulation succeeds, but
incorrectly. HSPICE does not warn you that the x1 inverter has no
assigned width, because the global parameter definition for Wid
overrides the subcircuit default.

Note: Similarly, sweeping with different values of Wid dynamically
changes both the Wid library internal parameter value, and the
pulse width value to the Wid value of the current sweep.

In global scoping, the highest-level name prevails, when resolving
name conflicts. Local scoping uses the lowest-level name.

When you use the parameter inheritance method, you can specify to
use local scoping rules. This feature can cause different results than
you obtained using HSPICE versions before release 95.1, on
existing circuits.

When you use local scoping rules, the Example 2 netlist correctly
aborts in x1, for W = 0 (default Wid = 0, in the .SUBCKT definition,
has higher precedence, than the .PARAM statement). This results in
the correct device sizes for x2. This change can affect your
simulation results, if you intentionally or accidentally create a circuit
such as the second one shown above.

As an alternative to width testing in the Example 2 netlist, you can
use .OPTION DEFW to achieve a limited version of library integrity.
This option sets the default width for all MOS devices during a
simulation. Part of the definition is still in the top-level circuit, so this
method can still make unwanted changes to library values, without
notification from the HSPICE simulator.

Parameters and Functions: Parameter Scoping and Passing
6-17

Table 6-6 compares the three primary methods for configuring
libraries, to achieve required parameter checking for default MOS
transistor widths.

Table 6-6 Methods for Configuring Libraries

Method |Parameter Pros Cons
Location

Local On a .SUBCKT Protects library from global You cannot use it with
definition line circuit parameter definitions, versions of HSPICE before

unless you override it. Single |Release 95.1.
location for default values.

Global | Atthe global level |Works with older HSPICE An indiscreet user, another
and on .SUBCKT |versions. vendor assignment, or the
definition lines intervening hierarchy can

change the library. Cannot
override a global value at a

lower level.
Special |.OPTION DEFW | Simple to do. Third-party libraries, or other
statement sections of the design, might

depend on the DEFW option.

Parameter Defaults and Inheritance
Use the .OPTION PARHIER parameter to specify scoping rules.

. OPTI ON PARHIER = < GLOBAL | LOCAL >

The default setting is GLOBAL, which uses the same scoping rules
that HSPICE used before Release 95.1.

EXAMPLE:

The following example explicitly shows the difference between local
and global scoping, for using parameters in sub-circuits.

Parameters and Functions: Parameter Scoping and Passing
6-18

The input netlist includes the following:

. OPTI ON par hi er=<gl obal | | ocal >
. PARAM Def Pwi d = 1u
.SUBCKT Inv ay DefPwid = 2u DefNwid = 1lu
Mpl <MosPi nLi st> pMdsMod L 1.2u W= DefPwi d
WMhl <MosPi nLi st> nMoshMod L 1.2u W= DefN\wi d
ENDS

Setthe .OPTION PARHIER = parameter scoping option
to GLOBAL. The netlist also includes the following input statements:

xInv0 a yO I nv$override Def Pwi d default,
$ xInv0. Mpl width = 1u
xInvl a yl Inv DefPwid =
$ xInvl. Mpl width = 1u

m

.measure tran WdO para

S5u$overri de Def Pwi d=5u,

= "Iv2(xInvD. Ml)"$ Iv2 is the

$ tenplate for the
.nmeasure tran Wdl param = "|v2(xlnvl. Mp1l)’ $ channel wi dth
$ 1v2(xlInvli. Mpl)’

. ENDS

Simulating this netlist produces the following results in the listing file:
wi do = 1. 0000E- 06

widl = 1. 0000E- 06

If you change the .OPTION PARHIER = parameter scoping option
to LOCAL:

xInv0 a yO I nv$not override . param Def Pwi d=2u,
$ xInv0. Mpl width = 2u
xInvl a yl Inv Def Pwi d = 5u$override . param Def Pwi d=2u,
$ xlnvl. Mpl width = 5u:
.nmeasure tran WdO param = '|v2(xInv0.Ml)'$ override the
.nmeasure tran Wdl param = "|v2(xlnvl. Mpl)’ $ gl obal .PARAM

Simulation produces the following results in the listing file:

w dO
w dl

2. 0000E- 06
5. 0000E- 06

Parameters and Functions: Parameter Scoping and Passing
6-19

Parameter Passing

Figure 6-1 shows a flat representation of a hierarchical circuit, which
contains three resistors.

Each of the three resistors obtains its simulation time resistance from
the Val parameter. The netlist defines the Val parameter in four
places, with three different values.

Figure 6-1 Hierarchical Parameter Passing Problem

TEST OF PARHIER
.OPTION list node post = 2
+ingold = 2
Subl Sub2 Sub3 + parhier = <Local|Global>
.PARAM Val =1
x1 n0 0 Subl
.SubCkt Subl n1 n2 Val =1
rl nl n2 Val
X2 nl n2 Sub2

+
rl r2 r3 .Ends Subl
; § § 'SubCkt Sub2 n1 n2 Val = 2
r2 nl1 n2 Val
— x3 nl n2 Sub3
.Ends Sub2
.SubCkt Sub3 n1 n2 Val =3

r3 nl n2 Val
.Ends Sub3
.OP
.END

The total resistance of the chain has two possible solutions: 0.3333
Q and 0.5455Q .

You can use the PARHIER option to specify which parameter value
prevails, when you define parameters with the same name at
different levels of the design hierarchy.

Under global scoping rules, if names conflict, the top-level
assignment .PARAM Val = 1 overrides the subcircuit defaults, and
the total is 0.3333 Q Under local scoping rules, the lower level
assignments prevail, and the total is 0.5455 Q (one, two, and three
ohms in parallel).

Parameters and Functions: Parameter Scoping and Passing
6-20

The example in Figure 6-1 on page 6-20 produces the results in
Table 6-7, based on how you set the local/global PARHIER option:

Table 6-7 PARHIER = LOCAL vs. PARHIER = GLOBAL Results

Element PARHIER = Local PARHIER = Global
rl 1.0 1.0
r2 2.0 1.0
r3 3.0 1.0

Parameter Passing Solutions

Changes in scoping rules can cause different simulation results, for
circuit designs created before HSPICE Release 95.1, than for
designs created after that release. The checklist below determines
whether you will see simulation differences when you use the new
default scoping rules. These checks are especially important if your
netlists contain devices from multiple vendor libraries.

» Check your sub-circuits for parameter defaults, on the .SUBCKT
or .MACRO line.

» Check your sub-circuits for a .PARAM statement, within
a .SUBCKT definition.

» To check your circuits for global parameter definitions, use
the .PARAM statement.

« If any of the names from the first three checks are identical, set
up two HSPICE simulation jobs: one with .OPTION
PARHIER = GLOBAL, and one with .OPTION
PARHIER = LOCAL. Then look for differences in the output.

Parameters and Functions: Parameter Scoping and Passing
6-21

Parameters and Functions: Parameter Scoping and Passing
6-22

Simulation Output

Use output format statements and variables to display steady state,
frequency, and time domain simulation results. You can also use
these variables in behavioral circuit analysis, modeling, and
simulation techniques. To display electrical specifications (such as
rise time, slew rate, amplifier gain, and current density), use the
output format features.

This chapter explains the following topics:

* Overview of Output Statements

» Displaying Simulation Results

» Selecting Simulation Output Parameters

» Specifying User-Defined Analysis (MEASURE)

« .DOUT Statement: Expected Digital Output Signal
* Reusing Simulation Output as Input Stimuli
 Element Template Listings

Simulation Output:
7-1

Overview of Output Statements

Output Commands

The input netlist file contains output statements, including .PRINT,
.PLOT, .GRAPH, .PROBE, .MEASURE, and .DOUT. Each
statement specifies the output variables, and the type of simulation
result, to display—such as .DC, .AC, or .TRAN. When you

specify .OPTION POST, Synopsys HSPICE puts all output variables,
referenced in .PRINT, .PLOT, .GRAPH, .PROBE, .MEASURE,
.DOUT, and .STIM statements, into AvanWaves interface files.

AvanWaves provides high-resolution, post-simulation, and
interactive display of waveforms.

Table 7-1 Output Statements

Output Description
Statement
.PRINT Prints numeric analysis results in the output listing file (and post-

processor data, if you specify .OPTION POST).

.PLOT Generates low-resolution (ASCII) plots in the output listing file (and post-
(HSPICE only) | processor data, if you specify .OPTION POST), in HSPICE.

.GRAPH Generates high-resolution plots, for specific printing devices (such as HP
(HSPICE only) LaserJet), or in PostScript format (intended for hard-copy outputs,
without a using a post-processor).

.PROBE Outputs data to post-processor output files, but not to the output listing
(used with .OPTION PROBE, to limit output).

.MEASURE Prints the results of specific user-defined analyses (and post-processor
data, if you specify .OPTION POST), to the output listing file. You can
use the MEASURE statement in HSPICE.

.DOUT Specifies the expected final state of an output signal.

.STIM Specifies simulation results to transform to PWL, Data Card, or Digital
Vector File format.

Simulation Output; Overview of Output Statements
7-2

Output Variables

The output format statements require special output variables, to
print or plot analysis results for nodal voltages and branch currents.
HSPICE uses the following output variables:

 DC and transient analysis
 AC analysis

» element template

« .MEASURE statement

* parametric analysis

For HSPICE, DC and transient analysis displays:
« individual nodal voltages: V(nl1 [,n2])

* branch currents: 1(Vxx)

« element power dissipation: In(element)

AC analysis displays imaginary and real components of a nodal
voltage or branch current, and the magnitude and phase of a nodal
voltage or branch current. AC analysis results also print impedance
parameters, and input and output noise.

Element template analysis displays element-specific nodal voltages,
branch currents, element parameters, and the derivatives of the
element’s node voltage, current, or charge.

The .MEASURE statement variables define the electrical
characteristics to measure in a .MEASURE statement analysis.

Parametric analysis variables are mathematical expressions, which
operate on nodal voltages, branch currents, element template
variables, or other parameters that you specify. Use these variables
when you run behavioral analysis of simulation results. See Using
Algebraic Expressions on page 6-8.

Simulation Output: Overview of Output Statements
7-3

Displaying Simulation Results

The following section describes the statements that you can use to
display simulation results for your specific requirements.

.PRINT Statement

The .PRINT statement specifies output variables, for which HSPICE
prints values.

The maximum number of variables in a single .PRINT statement,
was 32 before Release 2002.2, but has been extended. For
example, you can enter:

.PRINT v(1) v(2) ... v(32) v(33) v(34)
This function previously required two .PRINT statements:
.PRINT v(1) v(2) ... v(32)

. PRINT v(33) v(34)

To simplify parsing of the output listings, HSPICE prints a single
X in the first column, to indicate the beginning of the .PRINT
output data. A single y in the first column indicates the end of
the .PRINT output data.

SYNTAX:
. PRINT antype ovl <ov2 ...>

Table 7-2 .PRINT Syntax
Parameter | Description
antype Type of analysis for outputs. Antype is one of the following types: DC, AC, TRAN,
NOISE, or DISTO.
ovl ... Output variables to print. These are voltage, current, or element template
variables, from a DC, AC, TRAN, NOISE, or DISTO analysis.

You can include wildcards in .PRINT statements. See Using
Wildcards on page 2-2.

Simulation Output: Displaying Simulation Results

7-4

You can also use the iall keyword in a .PRINT statement, to print all
branch currents of all diode, BJT, JFET, or MOSFET elements in
your circuit design.

EXAMPLE:

If your circuit contains four MOSFET elements (hamed m1, m2, m3,
and m4), then .print iall (m*) is equivalent to .print i(m1) i(m2) i(m3)
I(m4), and prints the output currents of all four MOSFET elements.

Statement Order

HSPICE creates different .sw0 and .trO files, based on the order of
the .print and .dc statements. If you do not specify an analysis type
for a .print command, the type matches the last analysis command
in the netlist, before the .print statement.

EXAMPLE 1:

CASE 1

.print v(din) i(nmnl8)
.dc vdin O 5.0 0.05
.tran 1ns 60ns

CASE 2

.dc vdin O 5.0 0.05
.tran 1ns 60ns

.print v(din) i(nmnl8)

CASE 3

.dc vdin 0 5.0 0.05
.print v(din) i(nmnl8)
.tran 1ns 60ns

« If you replace the .print statement with:

.print TRAN v(din) i(mx)

then all three cases have identical .sw0 and .trO files.
« If you replace the .print statement with:

.print DC v(din) i(mmx)

then the .sw0 and .trO files are different.

Simulation Output: Displaying Simulation Results
7-5

EXAMPLE 2:
.PRINT TRAN V(4) I (VIN) PAR('V(OUT)/V(IN))

This example prints the results of a transient analysis, for the nodal
voltage named 4. It also prints the current, through the voltage
source named VIN. It also prints the ratio of the nodal voltage at the
OUT and IN nodes.

EXAMPLE 3:
.PRINT AC VM 4, 2) VR(7) VP(8,3) I1(Rl)

* Depending on the value of the ACOUT option, VM(4,2) prints the
AC magnitude of the voltage difference, or the difference of the
voltage magnitudes, between nodes 4 and 2.

* VR(7) prints the real part of the AC voltage, between node 7 and
ground.

» Depending on the ACOUT value, VP(8,3) prints the phase of the
voltage difference between nodes 8 and 3, or the difference of
the phase of voltage at node 8 and voltage at node 3.

* 1I(R1) prints the imaginary part of the current, through R1.

EXAMPLE 4:
.PRINT AC ZIN YOUT(P) S11(DB) S12(M Z11(R)

This example prints:

* The magnitude of the input impedance.
» The phase of the output admittance.

« Several S and Z parameters.

This statement accompanies a network analysis, using the .AC
and .NET analysis statements.

Simulation Output: Displaying Simulation Results

7-6

EXAMPLE 5:
.PRINT DC V(2) I(VSRC) V(23,17) I1(Rl) I1(M)

This example prints the DC analysis results for several different
nodal voltages and currents, through:

 The resistor named R1.
» The voltage source named VSRC.
 The drain-to-source current of the MOSFET named M1.

EXAMPLE 6:
. PRINT NO SE | NO SE

This example prints the equivalent input noise.

EXAMPLE 7:
. PRINT DI STO HD3 SI M2(DB)

This example prints the magnitude of third-order harmonic distortion,
and the decibel value of the intermodulation distortion sum, through
the load resistor that you specify in the .DISTO statement.

EXAMPLE 8:
.PRINT AC I NO SE ONO SE VM QUT) HD3

This statement includes NOISE, DISTO, and AC output variables in
the same .PRINT statement in HSPICE.

EXAMPLE 9:
.PRINT pj1 = par(‘p(rd) +p(rs)*)
This statement prints the value of pj1, with the specified function.

Note: HSPICE ignores .PRINT statement references to nonexistent
netlist part names, and prints those names in a warning.

Simulation Output: Displaying Simulation Results
7-7

EXAMPLE 10:

Derivative function:
. PRI NT der=deriv(’v(NodeX)’)
Integrate function:
.PRINT int = integ(’v(NodeX)’)
The parameter can be a node voltage, or a reasonable expression.

.PLOT Statement

The .PLOT statement plots the output values of one or more
variables, in a selected HSPICE analysis. Each .PLOT statement
defines the contents of one plot, which can contain more than one
output variable.

If you do not specify plot limits, HSPICE determines the minimum
and maximum values of each output variable that it plots, and scales
each plot to fit common limits. To force HSPICE to set limits for
certain variables, set the plot limits to (0,0) for the variables.

To make HSPICE find plot limits for each plot individually, use
.OPTION PLIM to create a different axis for each plot variable. The
PLIM option is similar to the plot limit algorithm in SPICE2G.6, where
each plot can have limits different from any other plot. A number from
2 through 9 indicates the overlap of two or more traces on a plot.

If more than one output variable appears on the same plot, HSPICE
prints and plots the first variable specified. To print out more than one
variable, include another .PLOT statement.

You can specify an unlimited number of .PLOT statements for each
type of analysis. To set the plot width, use the CO (columns out)
option. If you set CO to 80, the plot has 50 columns. If CO is 132, the
plot has 100 columns.

You can include wildcards in .PLOT statements. See Using
Wildcards on page 2-2.

Simulation Output: Displaying Simulation Results

7-8

SYNTAX:
. PLOT antype ovl <(plol, phil)> <ov2> <(plo2,phi2)> ...>

Table 7-3 .PLOT Syntax

Parameter | Description

antype

Type of analysis for the specified plots. Analysis types are: DC, AC, TRAN,
NOISE, or DISTO.

ovl ...

Output variables to plot: voltage, current, or element template, from a DC,
AC, TRAN, NOISE, or DISTO analysis. See the next sections for syntax.

plol,
phil ...

Lower and upper plot limits. The plot for each output variable uses the first
set of plot limits, after the output variable name. Set a new plot limit for each
output variable, after the first plot limit. For example, to plot all output
variables that use the same scale, specify one set of plot limits at the end of
the .PLOT statement. If you set the plot limits to (0,0) HSPICE automatically
sets the plot limits.

EXAMPLE:

In the following example, PAR plots the ratio of the collector current
and the base current, for the Q1 transistor.

.PLOT DC V(4) V(5) V(1) PAR(‘11(QL)/12(QL)")

.PLOT TRAN V(17,5) (2,5) I(VIN) V(17) (1,9)

.PLOT AC VM 5) VM 31,24) VDB(5) VP(5) INJ SE

The second of the two above examples uses the VDB output
variable to plot AC analysis results (in decibels), for node 5. The AC
plot can include NOISE results and other variables that you specify.
.PLOT AC ZIN YOUT(P) S11(DB) S12(M Z11(R

. PLOT DI STO HD2 HD3(R) SI M

. PLOT TRAN V(5,3) V(4) (0,5) V(7) (0, 10)

.PLOT DC V(1) V(2) (0,0) V(3) V(4) (0,5)

In the last example above, HSPICE sets the plot limits for V(1) and
V(2), but you specify 0 and 5 volts as the plot limits for V(3) and V(4).

Simulation Output: Displaying Simulation Results
7-9

.PROBE Statement

The .PROBE statement saves output variables into interface and
graph data files. HSPICE usually saves all voltages, supply currents,
and output variables. Set .OPTION PROBE, to save output variables
only. Use the .PROBE statement to specify the quantities to print in
the output listing.

If you are interested only in the output data file, and you do not want
tabular or plot data in your listing file, set .OPTION PROBE and
use .PROBE to select the values to save in the output listing.

You can include wildcards in .PROBE statements. See Using
Wildcards on page 2-2.

SYNTAX:

. PROBE antype ovl <ov2 ...>

Table 7-4 .PROBE Syntax

Parameter | Description

antype Type of analysis for the specified plots. Analysis types are: DC, AC, TRAN,
NOISE, or DISTO.

ovl ... Output variables to plot. These are voltage, current, or element template
variables from a DC, AC, TRAN, NOISE, or DISTO analysis. A .PROBE
statement can include more than one output variable.

EXAMPLE:
.PROBE DC V(4) V(5) V(1) beta = PAR(' 11(Ql)/12(QL)")
EXAMPLE 2:

Derivative function:
. PROBE der =deri v(’ v(NodeX)’)

Simulation Output: Displaying Simulation Results
7-10

Integrate function:
.PROBE int = integ(’ v(NodeX)’)
The parameter can be a node voltage, or a reasonable expression.

.GRAPH Statement

Use the .GRAPH statement when you need high-resolution plots of
HSPICE simulation results.

Note: You cannot use .GRAPH statements in the PC version of
HSPICE.

This statement is similar to the .PLOT statement, with the addition of
an optional model. When you specify a model, you can add or
change graphing properties for the graph. The .GRAPH statement
generates a .gr# graph data file and sends this file directly to the
default high resolution graphical device (to specify this device, set
PRTDEFAULT in the meta.cfg configuration file).

Each .GRAPH statement creates a new .gr# file, where # ranges first
from 0 to 9, and then from a to z. You can create up to 36 graph files.
If you specify more than 36 .GRAPH statements, HSPICE overwrites
the graph files, starting with the .grO file.

To overcome this limitation, use ALT999 or ALT9999. These options
extend the number of digits allowed in the file name extension, to
either .gr### (ALT999) or .gr#### (ALT9999), where # ranges from
0to9.

You can include wildcards in .GRAPH statements. See Using
Wildcards on page 2-2.

Simulation Output: Displaying Simulation Results
7-11

SYNTAX:

. GRAPH antype <MODEL = mmane> <unanil = > ovl,
+ <unanR = >ov2 ... <unamm = >ovn (pl o, phi)

Table 7-5 .GRAPH Syntax

Parameter | Description

antype Type of analysis for the specified plots (outputs). Analysis types are: DC, AC,
TRAN, NOISE, or DISTO.

mname Plot model name, referenced in the .GRAPH statement. Use .GRAPH and its plot
name to create high-resolution plots directly from HSPICE.

unaml... You can define output names, which correspond to the ov1 ov2 ... output
variables (unaml1 unamz2 ...), and use them as labels, instead of output variables,
for a high resolution graphic output.

ovl ... Output variables to print. Can be voltage, current, or element template variables,
from a different type of analysis. You can also use algebraic expressions as
output variables, but you must define them inside the PAR() statement.

plo, phi Lower and upper plot limits. Set the plot limits only at the end of the .GRAPH
statement.

.MODEL Statement for .GRAPH
This section describes the model statement for GRAPH in HSPICE.

SYNTAX:
. MODEL mane PLOT (pnanil = val 1l pnanR = val 2...)

Table 7-6 .MODEL Syntax for .GRAPH

Parameter Description

mname Plot model name, referenced in .GRAPH statements

PLOT Keyword for a .GRAPH statement model

pnaml =vall... | Each .GRAPH statement model includes several model parameters. If you

do not specify model parameters, HSPICE uses the default values of the
model parameters, described in the following table. Pnamn is one of the
model parameters of a .GRAPH statement, and valn is the value of pnamn.
Valn can be more than one parameter.

Simulation Output: Displaying Simulation Results
7-12

EXAMPLE:

. GRAPH DC cgb = I x18(nml) cgd = I x19(ml) cgs = | x20(ml)
. GRAPH DC MODEL = plotbjt

+ nodel _ib
+ nodel _ic

par (i b)
par (i c)

i2(ql) nmeas_ib
i1(ql) nmeas_ic

+ nodel _beta = par(’i1(ql)/i2(ql)’")
+ meas_beta = par(’par(ic)/par(ib)’)(1le-10, 1le-1)
.MODEL plotbjt PLOT MONO = 1 YSCAL = 2 XSCAL = 2

+ XM N =

le-8 XMAX = le-1

Table 7-7 Model Parameters

Name Default | Description
(Alias)
MONO 0.0 Monotonic option. MONO = 1 automatically resets the x-axis, if any
change occurs in the x direction.
TIC 0.0 Shows tick marks.
FREQ 0.0 Plots symbol frequency.
» A value of 0 does not generate plot symbols.
» Avalue of n generates a plot symbol every n points.
This is not the same as the FREQ keyword in element statements (see
“Modeling Filters and Networks” in the HSPICE Applications Manual).
XGRID, |0.0 Set these values to 1.0, to turn on the axis grid lines.
YGRID
XMIN, 0.0 » If XMIN is not equal to XMAX, then XMIN and XMAX determine the x-
XMAX axis plot limits.
» If XMIN equals XMAX, or if you do not set XMIN and XMAX, then
HSPICE automatically sets the plot limits. These limits apply to the
actual x-axis variable value, regardless of the XSCAL type.
XSCAL |1.0 Scale for the x-axis. Two common axis scales are:
Linear(LIN) (XSCAL =1)
Logarithm(LOG) (XSCAL =2)
YMIN, 0.0 If YMIN is not equal to YMAX, then YMIN and YMAX determine the y-axis
YMAX plot limits.
The y-axis limits in the .GRAPH statement overrides YMIN and YMAX in
the model.
If you do not specify plot limits, HSPICE sets the plot limits. These limits
apply to the actual y-axis variable value, regardless of the YSCAL type.

Simulation Output: Displaying Simulation Results
7-13

Table 7-7 Model Parameters (Continued)

Name Default | Description
(Alias)
YSCAL |1.0 Scale for the y-axis. Two common axis scales are:

Linear(LIN)(YSCAL = 1)
Logarithm(LOG)(YSCAL = 2)

Using Wildcards in PRINT, PROBE, PLOT, and GRAPH
Statements

You can include wildcards in .PRINT and .PROBE statements, and
in .PLOT and .GRAPH statements.

EXAMPLE:

* test wildcard
.option post=2
vli 10 10
ri 1 n20 10
r20 n20 n21 10
r21 n21 0 10
.dc vl 1 10 1

***\W | dcard equi val ent for:
*oprint i(r1) i(r20) i(r21) i(vl)
.print (%)

***\W | dcard equi val ent for:

* probe v(0) v(1)

. probe v(?)

***W | dcard equi val ent for:
* plot v(n20) v(n2l)
. pl ot v(n2?)

***\W | dcard equi val ent for:
* graph v(n20, 1) v(n2l1, 1)
.graph v(n2*, 1)

.end

Simulation Output: Displaying Simulation Results
7-14

Supported wildcard characters are:

? Matches any single character that HSPICE supports.
* Matches zero or more characters that HSPICE supports.

Supported Wildcard Templates

v .vmvr vi vp vdb vt

Iimir i@ ipidbit

p pmpr pi pp pdb pt

| xn<n> |l vn<n> (n is a nunber 0~9)
i1l irl iiliplidblitl

12 inmir2ii2ip2idb2 it2

13 im ir3ii3ip3idb3it3

14 1mlird iid ipdidbd it4

i all

For detailed information about the templates, see Selecting
Simulation Output Parameters on page 7-23.

EXAMPLE:

Using wildcards in statements such as v(n2?) and v(n2*,1) in the
preceding test case (named test wildcard), you can also use the
following in statements (they are not equivalent), if you use an .ac
statement instead of a .dc statement:

vm(n2?) vr(n2?) vi(n2?) vp(n2?) vdb(n2?) vt(n2?)

vm(n2*,1) vr(n2*,1) vi(n2*,1) vp(n2*,1) vdb(n2*,1) vt(n2*, 1)
Using wildcards in statements such as i(*) in this test wildcard case.

You can also use the following in statements (they are not
equivalent) if you use an .ac statement instead of a .dc statement:

b(*) ir(*) ip(*) idb(*) it(*)

lall is an output template, for all branch currents of diode, BJT, JFET,
or MOSFET output. For example, iall(m*) is equivalent to:

i 1(nt) i2(nt) i3(n¥) i4(n¥).

Simulation Output: Displaying Simulation Results
7-15

Print Control Options
.OPTION CO for Printout Width

The number of output variables that print on a single line of output,
Is a function of the number of columns, which you use the CO option
to setin HSPICE.

Typical values are CO = 80 (the default) for narrow printouts, and
CO =132 for wide printouts. You can set up to five output variables
per 80-column output, and up to eight output variables per 132-
column output, with twelve characters per column. HSPICE
automatically creates additional print statements and tables, for all
output variables beyond the number that the CO option specifies.

.WIDTH Statement

You can use the .WIDTH statement to define the print-out width in
HSPICE.

SYNTAX:
.WDTH OUT = {80 | 132}
where OUT is the output print width

EXAMPLE:

.WDTH OQUT = 132 $ SPICE conpatible style
.OPTION CO = 132 $ preferred style

Permissible values for OUT are 80 and 132. You can also use the
CO option to set the OUT value.

Simulation Output: Displaying Simulation Results

7-16

.OPTION ALT999 or ALT9999, to Extend Output File
Name

The output files for a postprocessor (from .OPTION POST in
HSPICE) or .GRAPH statements have unigue extensions .xx#:

e XX IS a two-character text string, to denote the output type (see
Simulation Output on page 7-1 for more information).

« #is an alphanumeric character, that denotes the . ALTER number
of the current simulation. This limits the total number of . ALTER
statements in a netlist to 36, before the outputs begin overwriting
the current files.

The ALT999 and ALT9999 options extend the output file name suffix
to Xx### and xx####, respectively, where # represents a numerical
character (0 to 9) only. Use this syntax to include up to 1000 or
10,000 .ALTER statements in the input netlist, which creates a
unique file name for each output file.

.OPTION INGOLD for Printout Numerical Format

By default, HSPICE prints variable values in engineering notation:

F = le-15 M= 1le-3
P = 1le-12 K = 1e3
N = le-9 X = 1leb6
U= le-6 G = 1e9

In contrast to exponential form, engineering notation provides two to
three extra significant digits, and aligns columns to facilitate
comparison. To obtain output in exponential form, specify

INGOLD =1 or 2, with an .OPTION statement.

Simulation Output: Displaying Simulation Results
7-17

Table 7-8 .OPTION INGOLD Syntax

Value Description Defaults
INGOLD =0 Engineering Format 1.234K
(default) 123M
INGOLD =1 G Format (fixed and exponential) 1.234e+03
123
INGOLD =2 E Format (exponential SPICE) 1.234e+03
123e-1

.OPTION POST for High Resolution Graphics

Use an .OPTION POST statement to display high-resolution
AvanWaves plots of simulation results, on either a graphics terminal
or a high-resolution laser printer. Use .OPTION POST to provide
output, without specifying other parameters. POST has defaults,
which supply usable data to most parameters.

Table 7-9 .OPTION POST Syntax

Value

Description

POST = 0,1,BINARY

Output format is binary.

POST = 2,ASCII

Output format is ASCII.

POST =3

Output format is New Wave binary.

.OPTION ACCT Summary of Job Statistics

The accr option in HSPICE generates a detailed accounting report:

Table 7-10 .OPTION ACCT Syntax

Value

Description

.OPTION ACCT

Enables reporting.

.OPTION ACCT = 1 (default)

Is the same as ACCT, without arguments.

.OPTION ACCT =2

Enables reporting, and matrix statistic reporting.

Simulation Output: Displaying Simulation Results

7-18

EXAMPLE:

The following output example appears at the end of an output listing.
25. 000

**** job statistics summary tnom = 25.000 tenp
nodes = 15 # elenents = 29 # real *8

mem avai |l /used = 333333/ 13454

diodes = 0 # bjts =0 # fets = 0 # nosfets

anal ysi s

24

ti # points tot. iter conv.iter
op poi nt 0.24 1 11
transient 5.45 161 265 103 rev = 1
passl 0. 08

0

0

0

readi n .12
errchk . 05
setup .04
out put 0. 00

The analysis time includes the following time statistics:

| oad 5.22

sol ver 0. 16
external nodes = 15 # internal nodes =0
branch currents = 5 total matrix size = 20
pi vot based and non pivoting solution tinmes
non pivoting: ---- deconpose 0.08 solve 0.08
matrix size(109) = initial size(105) + fill(4)
words copied = 111124
total cpu time 6.02 seconds
job started at 11:54:11 21-sep92
j ob ended at 11:54:36 21-sep92

The definitions for the items in the previous listing follow:
Table 7-11 Output Example Syntax

Parameter Description

BJTS Number of bipolar transistors in the circuit.

ELEMENTS Total number of elements.

JFETS Number of JFETSs in the circuit.

MOSFETS Number of MOSFETSs in the circuit.

NODES Total number of nodes.

POINTS Number of transient points set in the . TRAN statement. JTRFLG
is usually at least 50, unless you set the DELMAX option.

Simulation Output: Displaying Simulation Results
7-19

Table 7-11 Output Example Syntax (Continued)

Parameter Description

CONV.ITER Number of points that the simulator needs, to preserve the
accuracy that the tolerances specify.

DC DC operating point analysis time, and number of iterations
required. ITL1 sets the maximum number of iterations.

ERRCHK Part of the input processing.

MEM + Amount of workspace available, and amount used in simulation.

AVAILUSED Measured in 64-bit (8-byte) words.

OUTPUT Time required, to process all prints and plots.

LOAD Constructs the matrix equation.

SOLVER Solves equations.

PASS1 Part of the input processing.

READIN Input reader reads the user data file and any additional library
files, and generates an internal representation of the information.

REV Number of times that the simulator had to cut time (reversals).
This measures how difficult the design is to simulate.

SETUP Constructs a sparse matrix pointer system.

TOTAL JOB Total CPU time required, to process the simulation. This is not the

TIME amount of actual (clock) time used to simulate, and can differ

slightly from run to run, even if the runs are identical.

The ratio of TOT.ITER to CONV.ITER is the best measure of

simulator efficiency. The theoretical ratio is 2:1. In this example the

ratio was 2.57:1. SPICE generally has a ratio from 3:1 to 7:1.

In transient analysis, the ratio of CONV.ITER to # POINTS is the
measure of the number of points evaluated, to the number of points
printed. If this ratio is greater than about 4:1, the convergence and
time step control tolerances might be too tight for the simulation.

Simulation Output: Displaying Simulation Results

7-20

Changing the File Descriptor Limit

A simulation that uses a large number of .ALTER statements might
fail, because of the limit on the number of file descriptors. For
example, for a Sun workstation, the default number of file descriptors
Is 64, so a design with more than 50 .ALTER statements probably
fails, with the following error message:

error could not open output spool file /tnp/tnp.nnn
a critical systemresource is inaccessible or exhausted

To prevent this error on a Sun workstation, enter the following
operating system command, before you start the simulation:

limt descriptors 128
For platforms other than Sun workstations, ask your system

administrator to help you increase the number of files that you can
open concurrently.

Printing the Subcircuit Output

The following examples demonstrate how to print or plot voltages of
nodes that are in subcircuit definitions, using .PRINT, .PLOT,
.PROBE, or .GRAPH.

Note: In the following example, you can substitute .PROBE, .PLOT,
or .GRAPH for .PRINT.

EXAMPLE 1:

. GLOBAL vdd vss

X112 3 nor2

X2 345 nor2

.SUBCKT nor2 ABY
.PRINT v(B) v(Nl) $ Print statement 1
ML N1 A vdd vdd pch w=6u | = 0.8u
M Y B NL vdd pch w=6u | = 0.8u
M3 Y A vss vss vss nch w= 3u | = 0.8u
MY B vss vss nch w=3u |l = 0.8u

. ENDS

Simulation Output: Displaying Simulation Results
7-21

Print statement 1 prints out the voltage on the B input node, and on
the N1 internal node, for every instance of the nor2 subcircuit.

.PRINT v(1) v(X1.A) $ Print statenent 2

The .PRINT statement above specifies two ways to print the voltage
on the A input of the X1 instance.

.PRINT v(3) v(XL.Y)v(X2.A) $ Print statenent 3

This print statement specifies three different ways to print the voltage
at the Y output of the X1 instance (or the A input of the X2 instance).

.PRINT v(X2.N1) $ Print statenment 4

The preceding statement prints the voltage on the N1 internal node
of the X2 instance.

.PRINT i (X1.ML) $ Print statenment 5

The print statement above prints out the drain-to-source current,
through the M1 MOSFET in the X1 instance.

EXAMPLE 2:

X1 5 6 YYY
. SUBCKT YYY 15 16
X2 16 36 ZZZ
RL 15 25 1
R2 25 16 1
. ENDS
. SUBCKT ZZZ 16 36
Cl 16 0 10P
R3 36 56 10K
C2 56 0 1P
. ENDS
.PRINT V(X1.25) V(X1.X2.56) V(6)

Table 7-12 .PRINT Voltages
Value Description
V(X1.25) Local node to the YYY subcircuit definition, which the X1 subcircuit calls.

V(X1.X2.56) | Local node to the ZZZ subcircuit. The X2 subcircuit calls this node; X1 calls X2.

V(6)

Voltage of node 16, in the X1 instance of the YYY subcircuit.

Simulation
7-22

Output: Displaying Simulation Results

This example prints voltage analysis results at node 56, within the X2
and X1 subcircuits. The full path, X1.X2.56, specifies that node 56 is
within the X2 subcircuit, which in turn is within the X1 subcircuit.

Selecting Simulation Output Parameters

Parameters provide the appropriate simulation output. To define
simulation parameters, use the .OPTION and .MEASURE
statements, and define specific variable elements.

DC and Transient Output Variables

» Voltage differences between specified nodes (or between one
specified node and ground).

« Current output, for an independent voltage source.

« Current output, for any element.

« Element templates. For each device type, the templates contain:

values of variables that you set
state variables

element charges

capacitance currents
capacitances

derivatives

Print Control Options on page 7-16 summarizes the codes that you
can use, to specify the element templates for output in HSPICE.

Simulation Output: Selecting Simulation Output Parameters
7-23

Nodal Voltage Syntax

V (nl<, n2>)
Table 7-13 Nodal Voltage Syntax
Parameter | Description
nl, n2 HSPICE prints or plots the voltage difference (n1-n2) between the specified

nodes. If you omit n2, HSPICE prints or plots the voltage difference between nl
and ground (node 0).

Current: Voltage Sources

SYNTAX:
I (VXXX)
Table 7-14 Current Source Syntax
Parameter | Description
VXXX Voltage source element name. If an independent power supply is within a
subcircuit, then to access its current output, append a dot and the subcircuit
name to the element name. For example, I(X1.VXxXx).
EXAMPLE:

.PLOT TRAN | (VI N)
.PRINT DC | (X1. VSRC)
.PLOT DC | (XSUB. XSUBSUB. VYY)

Current: Element Branches

SYNTAX:

In (Www)
lal | (VWww)

Simulation Output: Selecting Simulation Output Parameters

7-24

Table 7-15 Element Branch Syntax
Parameter | Description
n Node position number, in the element statement. For example, if the element
contains four nodes, | 3 is the branch current output for the third node. If you do
not specify n, HSPICE assumes the first node.
Wwww Element name. To access current output for an element in a subcircuit, append
a dot and the subcircuit name to the element name. For example, 1I3(X1.Wwww).
lall (Wwww) | An alias just for diode, BJT, JFET, and MOSFET devices.
o If Wwww is a diode, it is equivalent to:
o 11(Wwww) 12(Wwww).
« If Wwww is one of the other device types, it is equivalent to:
o 11(Wwww) 12(Wwww) 13(Wwww) 14(Wwww)
EXAMPLE 1:
| 1(R1)

This example specifies the current through the first R1 resistor node.

EXAMPLE 2:
| 4(X1. ML)

This example specifies the current, through the fourth node (the
substrate node) of the M1 MOSFET, defined in the X1 subcircuit.

EXAMPLE 3:

12(Q1)

The last example specifies the current, through the second node (the
base node) of the Q1 bipolar transistor.

To define each branch circuit, use a single element statement. When
HSPICE evaluates branch currents, it inserts a zero-volt power
supply, in series with branch elements.

If HSPICE cannot interpret a .PRINT or .PLOT statement that
contains a branch current, it generates a warning.

Simulation Output: Selecting Simulation Output Parameters
7-25

Branch current direction for the elements in Figure 7-1 through
Figure 7-6 is defined in terms of arrow notation (current direction),
and node position number (terminal type).

Figure 7-1 Resistor (nodel, node?2)

11 (R1) ¢ nodel
R1
12 (R1) ¢ | node2
Figure 7-2 Capacitor (nodel, node?2); Inductor (node 1, node2)
nodel
11(L1) 11(C1)
—
12(L1) 12(C1)
Y node2
Figure 7-3 Diode (nodel, node2)
11 (D1) l nodel (anode, P-type, + node)
@
12 (D2) l node2 (cathode, N-type, -node)

Figure 7-4 JFET (nodel, node2, node3) - n-channel
l nodel (drain node)

11 (J1)
node2
(gate node) 5 D
12 (J1)
13'(J1)

l node3 (source node)

Simulation Output: Selecting Simulation Output Parameters
7-26

Figure 7-5 BJT (nodel, node2, node3, node4) - npn

nodel (drain node)
11 (M1)

lnode4 (substrate node)

node2 (gate node) 14 (M1)

12(M1) —>

node3 (source node)
13 (M1)

Figure 7-6 MOSFET (nodel, node2, node3, node4) - n-channel

nodel (collector node)
11 (Q1)

node2 (base node)

12 (Q1) —

l 14 (Q1)
node3 (emitter node)
13 (Q1)

node4 (substrate node)

Power Output

For power calculations, HSPICE computes dissipated or stored

power in each passive element (R, L, C), and source (V, |, G, E, F,

and H). To compute this power, HSPICE multiplies the voltage
across an element, and its corresponding branch current.

However, for semiconductor devices, HSPICE calculates only the
dissipated power. It excludes the power stored in the device junction
or parasitic capacitances, from the device power computation. The

following sections show equations for calculating the power that

different types of devices dissipate.

Simulation Output: Selecting Simulation Output Parameters

7-27

HSPICE also computes the total power dissipated in the circuit,
which is the sum of the power dissipated in:

» devices

e resistors

* independent current sources
« all dependent sources

For hierarchical designs, HSPICE also computes the power
dissipation for each subcircuit.

Note: For the total power (dissipated power + stored power),
HSPICE does not add the power of each independent source
(voltage and current sources).

Print or Plot Power

To output the instantaneous element power, and the total power
dissipation, use a .PRINT or .PLOT statement in HSPICE.

SYNTAX:
.PRINT <DC | TRAN> P(el enent _or_subcircuit_nanme) POAER

HSPICE calculates power only for transient and DC sweep analyses.
Use the .MEASURE statement to compute the average, rms,
minimum, maximum, and peak-to-peak value of the power. The
POWER keyword invokes the total power dissipation output.

EXAMPLE:

. PRI NT TRAN P(ML) P(VIN) P(CLOAD) POVER

. PRINT TRAN P(QL) P(D O P(J10) PONER

. PRI NT TRAN PONER $ Total transient analysis
* power dissipation

.PLOT DC POAER P(11N) P(RLOAD) P(RL)
.PLOT DC POAER P(V1) P(RLOAD) P(VS)

.PRINT TRAN P(Xf1) P(Xf1.Xnh1)

Simulation Output: Selecting Simulation Output Parameters
7-28

Diode Power Dissipation
Pd = Vpp [{ldo + Icap) + Vp'n do
Table 7-16 Diode Power Dissipation Syntax

Parameter Description

Pd Power dissipated in the diode.

Ido DC component of the diode current.

Icap Capacitive component of the diode current.
Vp'n Voltage across the junction.

Vpp’ Voltage across the series resistance, RS.

BJT Power Dissipation
« \Vertical

Pd = Vc'e’dco+ Vb'e'Obo + Vcc' Octot + Vee' detot +
Vsc’ Uso—-Vcc' [stot

e Lateral

Pd = Vc'e’dco + Vb'e' dbo + Vcc' Octot + Vbb’ Obtot + Vee’ detot +
Vsb’0so —-Vbb’ dstot

Table 7-17 BJT Power Dissipation Syntax

Parameter | Description

Ibo DC component of the base current.

Ico DC component of the collector current.

Iso DC component of the substrate current.

Pd Power dissipated in a BJT.

Ibtot Total base current (excluding the substrate current).
Ictot Total collector current (excluding the substrate current).
letot Total emitter current.

Simulation Output: Selecting Simulation Output Parameters
7-29

Table 7-17 BJT Power Dissipation Syntax (Continued)

Istot Total substrate current.

Vb'e’ Voltage across the base-emitter junction.

Vbb’ Voltage across the series base resistance, RB.
Vvce' Voltage across the collector-emitter terminals.
Vcc' Voltage across the series collector resistance, RC.
Vee’ Voltage across the series emitter resistance, RE.
Vsb'’ Voltage across the substrate-base junction.

Vsc’ Voltage across the substrate-collector junction.

JFET Power Dissipation

Pd = Vd's’do + Vgd' gdo + Vgs’' [1gso +
Vs's [{ldo + Igso + Icgs) + Vdd' [{ldo —lgdo —Icgd)

Table 7-18 JFET Power Dissipation Syntax
Parameter | Description
Icgd Capacitive component of the gate-drain junction current.
Icgs Capacitive component of the gate-source junction current.
Ido DC component of the drain current.
Igdo DC component of the gate-drain junction current.
Igso DC component of the gate-source junction current.
Pd Power dissipated in a JFET.
vd's’ Voltage across the internal drain-source terminals.
vdd’ Voltage across the series drain resistance, RD.
Vad’ Voltage across the gate-drain junction.
Vgs' Voltage across the gate-source junction.
Vs's Voltage across the series source resistance, RS.

Simulation Output: Selecting Simulation Output Parameters

MOSFET Power Dissipation.

Pd = Vd's’0do + Vbd' b Ibdo + Vbs’' bso +
Vs's [{ldo + Ibso + Icbs + Icgs) + Vdd' [{ldo —Ibdo —Icbd —Icgd)

Table 7-19 MOSFET Power Dissipation Syntax

Parameter | Description

Ibdo DC component of the bulk-drain junction current.

Ibso DC component of the bulk-source junction current.

Icbd Capacitive component of the bulk-drain junction current.
Icbs Capacitive component of the bulk-source junction current.
Icgd Capacitive component of the gate-drain current.

Icgs Capacitive component of the gate-source current.

Ido DC component of the drain current.

Pd Power dissipated in the MOSFET.

Vbd’ Voltage across the bulk-drain junction.

Vbs’ Voltage across the bulk-source junction.

vd's’ Voltage across the internal drain-source terminals.

vdd’ Voltage across the series drain resistance, RD.

Vs's Voltage across the series source resistance, RS.

AC Analysis Output Variables
Output variables for AC analysis include:

» Voltage differences between specified nodes (or between one
specified node and ground).

« Current output, for an independent voltage source.

e Element branch current.

Simulation Output: Selecting Simulation Output Parameters
7-31

* Impedance (Z), admittance (Y), hybrid (H), and scattering (S)
parameters.

« Input and output impedance, and admittance.

Table 7-20 lists AC output variable types. In this table, the type
symbol is appended to the variable symbol, to form the output
variable name. For example, VI is the imaginary part of the voltage,
or 1 mis the magnitude of the current.

Table 7-20 AC Output Variable Types

Type Symbol Variable Type

DB decibel

I imaginary part

M magnitude
P phase

R real part

T group delay

Specify real or imaginary parts, magnitude, phase, decibels, and
group delay, for voltages and currents.

Nodal Voltage

SYNTAX:
Vx (nl, <, n2>)

Table 7-21 Nodal Voltage Syntax

Parameter | Description

X Specifies the voltage output type (see Table 7-20 on page 7-32])

nl, n2 Specifies node names. If you omit n2, HSPICE assumes ground (node 0).

Simulation Output: Selecting Simulation Output Parameters

7-32

EXAMPLE 1:
.PLOT AC VM 5) VDB(5) VP(5)

The preceding example plots the magnitude of the AC voltage of
node 5, using the VM output variable. HSPICE uses the VDB output
variable to plot the voltage at node 5, and uses the VP output
variable to plot the phase of the nodal voltage at node 5.

To produce complex results, an AC analysis uses either the SPICE
or HSPICE method, and the ACOUT control option, to calculate the
values of real or imaginary parts, for complex voltages of AC
analysis, and their magnitude, phase, decibel, and group delay
values. The default for HSPICE is ACOUT = 1. To use the SPICE
method, set ACOUT = 0.

A typical use of the SPICE method is to calculate the nodal vector
difference, when comparing adjacent nodes in a circuit. You can use
this method to find the phase or magnitude across a capacitor,
inductor, or semiconductor device.

Use the HSPICE method to calculate an inter-stage gain in a circuit
(such as an amplifier circuit), and to compare its gain, phase, and
magnitude.

The following example defines the AC analysis output variables for
the HSPICE method, and then for the SPICE method.

EXAMPLE 2:: HSPICE Method (ACOUT = 1, Default)

* Real and imaginary:

VR(NL, N2) = REAL [V(NL1,0)] - REAL [V(N2,0)]

VI(NL,N2) = IMAG [V(NL,0)] - IMAG [V(N2,0)]
* Magnitude:

VMNL,0) = [VR(NL,0)2 + VI(NL,0)?305>

VMN2,0) = [VR(N2,0)2 + VI(N2,0)?]95°

VM NL, N2) = VMNL, 0) - VM N2, 0)

Simulation Output: Selecting Simulation Output Parameters
7-33

Table 7-22

 Phase:

VP(N1, 0) = ARCTAN VI (N1, 0)/ VR(N1, 0)]

VP(N2, 0) = ARCTAN VI (N2, 0)/ VR(N2, 0)]

VP(N1, N2) = VP(NL, 0) - VP(N2,0)
 Decibel:

VDB(N1, N2) = 20 [LOGLO(VM N1, 0)/ VM N2, 0))

EXAMPLE 3: SPICE Method (ACOUT = 0)

* Real and imaginary:

VR(NL, N2) = REAL [V(N1,0) - V(N2,0)]

VI(NL,N2) = IMAG [V(NL,0) - V(N2,0)]
* Magnitude:

VM NI, N2) = [VR(NL, N2)2+VI (N1, N2) 2] 0%
 Phase:

VP(NL, N2) = ARCTAN VI (N1, N2)/VR(NL, N2)]
* Decibel:

VDB(NL, N2) = 20 [LOGLO[VM NL, N2)]

Current: Independent Voltage Sources

SYNTAX:
Iz (VXXX)

Independent Voltage Source Syntax

Parameter

Description

z

Current output type (see Table 7-20 on page 7-32]).

VXXX

Voltage source element name. If an independent power supply is within
a subcircuit, then to access its current output, append a dot and the
subcircuit name to the element name. For example, IM(X1.VxxXx).

Simulation Output: Selecting Simulation Output Parameters

7-34

EXAMPLE:
.PLOT AC IR(V1) I MVN2B) |P(X1l.X2.VSRC)

Current: Element Branches

SYNTAX:

lzn (Www)
Table 7-23 Element Branch Syntax

Parameter | Description

z Current output type (see Table 7-20 on page 7-32]).

n Node position number, in the element statement. For example, if the
element contains four nodes, IM3 denotes the magnitude of the branch
current output, for the third node.

Wwww Element name. If the element is within a subcircuit, then to access its
current output, append a dot and the subcircuit name to the element
name. For example, IM3(X1.Wwww).

.PRINT AC I P1(Q6) | ML(QB) |DBA4(X1. M)

If you use the form In(Xxxx) for AC analysis output, then HSPICE
prints the magnitude value, IMN(XxxXx).

Group Time Delay

The TD group time delay is associated with AC analysis. TD is the
negative derivative of the phase in radians, with respect to radian
frequency. HSPICE uses the difference method to compute TD:

1 E(phasez phasel)
360 (f2 -f1)

where phasel and phase?2 are the phases (in degrees) of the
specified signal, at the f1 and f2 frequencies (in Hertz).

TD =

Simulation Output: Selecting Simulation Output Parameters
7-35

SYNTAX:

. PRINT AC VT(10) VT(2,25) I T(RL)
.PLOT AC I T1(QL) | T3(ML5) | T(D1)

Note: Because the phase has a discontinuity every 360x, TD shows
the same discontinuity, even though TD is continuous.

EXAMPLE:

| NTEG SP ACTI VE | NTEGRATOR
*rExEx | NPUT LI STI NG

*kkk*k*%x

Vil 1 0 .5 AC1
R1 1 2 2K

c1 2 3 5NF

E3 3 0 2 0 -1000.0
. AC DEC 15 1K 100K

.PLOT AC VT(3) (0,4U) VP(3)

. END

Network

SYNTAX:

Xij (z), ZIN(2, ZzQUT(2, YIN(2, YOUT(2

Table 7-24 Network Syntax

Parameter | Description

X Specifies Z (impedance), Y (admittance), H (hybrid), or S (scattering).

ij i and j can be 1 or 2. They identify the matrix parameter to print.

z Output type (see Table 7-20 on page 7-32]). If you omit z, HSPICE prints the
magnitude of the output variable.

ZIN Input impedance. For a one-port network, ZIN, Z11, and H11 are the same.

ZOUT Output impedance.

YIN Input admittance. For a one-port network, YIN and Y11 are the same.

YOUT Output admittance.

Simulation Output: Selecting Simulation Output Parameters
7-36

EXAMPLE:

.PRINT AC Z11(R Z12(R) Y21(l) Y22 S11 S11(DB)
.PRINT AC ZIN(R) ZIN(1) YOUT(M YOUT(P) HL1(M
.PLOT AC S22(M S22(P) S21(R) H21(P) HI2(R)

Noise and Distortion

This section describes the variables used for noise and distortion
analysis.

SYNTAX:

ovar <(2 >

Table 7-25 Noise and Distortion Syntax

Parameter | Description

ovar Noise and distortion analysis parameter. It can be ONOISE (output noise),
INOISE (equivalent input noise), or any of the distortion analysis parameters
(HD2, HD3, SIM2, DIM2, DIM3).

z Output type (only for distortion). If you omit z, HSPICE outputs the magnitude
of the output variable.

EXAMPLE:
. PRINT DI STO HD2(M HD2(DB)

Prints the magnitude and decibel values of the second harmonic
distortion component, through the load resistor that you specified in
the .DISTO statement (not shown).

. PLOT NO SE | NO SE ONO SE

Note: You can specify the noise and distortion output variable, and
other AC output variables, in the .PRINT AC or .PLOT AC

Statements.

Simulation Output: Selecting Simulation Output Parameters
7-37

Element Template Output

PRINT, .PROBE, .PLOT, and .GRAPH statements use element
templates to output user-input parameters, state variables, stored
charges, capacitor currents, capacitances, and derivatives of
variables. Element templates are listed at the end of this chapter.
SYNTAX:

El nanme: Property

Table 7-26 Element Template Syntax

Parameter | Description

Elname Name of the element.

Property Property name of an element, such as a user-input parameter, state variable,
stored charge, capacitance current, capacitance, or derivative of a variable.

The alias is:

LVnn(El nane)
LXnn(El nane)

Table 7-27 Element Template Alias Syntax

Parameter | Description

LV Form to obtain output of user-input parameters, and state variables.
LX Form to obtain output of stored charges, capacitor currents, capacitances,
and derivatives of variables.
nn Code number for the desired parameter (listed in tables in this section).
Elname Name of the element.
EXAMPLE:

.PLOT TRAN V(1,12) 1(X2.VSIN) 12(Q8) Di01:GD
. PRINT TRAN X2. ML: CGGBO ML: CGDBO X2. ML: CGSBO

Simulation Output: Selecting Simulation Output Parameters

7-38

Specifying User-Defined Analysis (MEASURE)

Use the .MEASURE statement to modify information, and to define
the results of successive HSPICE simulations. The .MEASURE
statement prints user-defined electrical specifications of a circuit.
Optimization uses .MEASURE statements extensively. The
specifications include:

e propagation

o delay
* risetime
» fall time

* peak-to-peak voltage
* minimum and maximum voltage over a specified period
» other user-defined variables

You can also use .MEASURE with either the error function or GOAL
parameter, to optimize circuit component values, and to curve-fit
measured data to model parameters.

Computing the measurement results is based on postprocessing
output. If you use the INTERP option to reduce the size of the
postprocessing output, then the measurement results can contain
interpolation errors. See Input and Output Options on page 8-34 for
more information about the INTERP option.

The .MEASURE statement can use several different formats,
depending on the application. You can use it for either DC sweep,
AC, or transient analysis.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-39

Fundamental measurement modes in HSPICE are:
* Rise, fall, and delay

« Find-when

« Equation evaluation

* Average, RMS, min, max, and peak-to-peak

» Integral evaluation

« Derivative evaluation

* Relative error

If a .MEASURE statement does not execute, then HSPICE writes
0.0e0 in the .mt# file as the .MEASURE result, and writes FAILED in
the output listing file. Use the MEASFAIL option to write results to
the .mt#, .ms#, or .ma# files. See Input and Output Options on
page 8-34 for information about the MEASFAIL option.

To control the output variables, listed in .MEASURE statements, use
the .PUTMEAS option. See Input and Output Options on page 8-6
for more information.

.MEASURE Performance

If you specify a large number of .measure statements, HSPICE
might not complete for several minutes, or several hours. Overall
simulation run time depends on the number of .measure statements
to process for each iteration, and the number of iterations required
to achieve convergence.

To reduce simulation run time, place similar variables together, when
you list them in the .measure statement.

Simulation Output: Specifying User-Defined Analysis (MEASURE)

7-40

EXAMPLE 1:

Original Case (Slower, due to repeated switching between the v1
and v2 variables):

.nmeas tran vall AVG v(1) FROM=Ons TO=50ns

.meas tran val 2 AVG v(2) FROVEOnms TO=50ns

.meas tran val 3 AVG v(1) FROVE50nms TO=100ns
.meas tran val 4 AVG v(2) FROVE50nms TO=100ns

EXAMPLE 2:

Improved Case (Faster):

.nmeas tran vall AVG v(1) FROM=Ons TO=50ns
.nmeas tran val 3 AVG v(1) FROMES50ns TO=100ns
.nmeas tran val 2 AVG v(2) FROM=Ons TO=50ns
.meas tran val 4 AVG v(2) FROVE50nms TO=100ns

The second exampile lists all V(1) variables consecutively, followed
by all v(2) variables. In this second case, HSPICE applies all
measurements to a single variable (v1) at the same time. This
reduces overall simulation run time, compared to switching back to
the same variable repeatedly, when you do not sort the .measure list
by variable name.

To automatically sort large numbers of .measure statements in this
way, use the .option meassort statement.

SYNTAX:

.option neassort=0 (defaul t; does not sort .neasure statenents)
.option neassort=1 (internally sorts .measure statenents)

Set this option to 1 only if you use a large number of .measure
statements, where you need to list similar variables together, to
reduce simulation run time. For a small number of .measure
statements, turning on internal sorting might slow-down the
simulation while sorting, compared to not sorting first.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-41

.MEASURE Parameter Types

Measurement parameter results produced by .PARAM statements

in .SUBCKT blocks produce measurement results, but you cannot

use those results outside of the subcircuit. That is, you cannot pass
any measurement parameters defined in .SUBCKT statements, as
bottom-up parameters in hierarchical designs.

Measurement parameter names must not conflict with standard
parameter names. HSPICE issues an error message, if it encounters
a measurement parameter with the same name as a standard
parameter definition.

To prevent. MEASURE statement parameters from overwriting
parameter values in other statements, HSPICE keeps track of
parameter types. If you use the same parameter name in both

a .MEASURE statement and a .PARAM statement at the same
hierarchical level, simulation terminates and reports an error. No
error occurs if parameter assignments are at different hierarchical
levels. PRINT statements that occur at different levels, do not print
hierarchical information for parameter name headings.

EXAMPLE:

The following example illustrates how HSPICE handles . MEASURE
statement parameters.

. MEASURE tran length TRIG v(clk) VAL = 1.4

+ TD = 11ns RISE = 1 TARG/(neq) VAL = 1.4 TD = 11ns
+ RRSE = 1

. SUBCKT path out in width = 0.9u |length = 600u
+rnl inm nm2ng w="wdth | = "length/6&

. ENDS

Simulation Output: Specifying User-Defined Analysis (MEASURE)

7-42

In the above listing, the length in the resistor statement:

rol in nl m2ng w = "width’ | = "’length/6

does not inherit its value from length in the .MEASURE statement:
. MEASURE tran length ...

because they are of different types.

The correct value of | in rm1 should be:

| = length/6 100u
not a value derived from a measured value in transient analysis.

.MEASURE Statement: Rise, Fall, and Delay

Use this format to measure independent-variable (time, frequency,
or any parameter or temperature) differential measurements such as
rise time, fall time, slew rate, or any measurement that requires
determining independent variable values. The format specifies TRIG
and TARG substatements. These two statements specify the
beginning and end of a voltage or current amplitude measurement.

The rise, fall, and delay measurement mode computes the time,
voltage, or frequency between a trigger value and a target value.
Examples for transient analysis include rise/fall time, propagation
delay, and slew rate measurement. Applications for AC analysis are
the measurement of the bandwidth of an amplifier or the frequency
at which a certain gain is achieved.

SYNTAX:

. MEASURE <DC| AC| TRAN> result TRIG ... TARG ...
+ <@OAL = val > <M NVAL = val > <\El GHT = val >

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-43

Table 7-28 TRIG and TARG Measurement Syntax

Parameter Description
MEASURE Specifies measurements. You can abbreviate to MEAS.
result Name associated with the measured value, in the HSPICE output. This

example measures the independent variable, beginning at the trigger,
and ending at the target:

» Transient analysis measures time.

» AC analysis measures frequency.

* DC analysis measures the DC sweep variable.

If simulation reaches the target before the trigger activates, the resulting
value is negative.

Do not use DC, TRAN, or AC as the result name.

TRIG... Identifies the beginning of trigger specifications.

TARG ... Identifies the beginning of target specifications.

<DC|AC|TRAN> Specifies the analysis type of the measurement. If you omit this
parameter, HSPICE uses the last analysis mode that you requested.

GOAL Specifies the desired measure value in ERR calculation for optimization.
To calculate the error, the simulation uses the equation:

ERRfun = (GOAL —result)/GOAL .

MINVAL If the absolute value of GOAL is less than MINVAL, the MINVAL replaces
the GOAL value, in the denominator of the ERRfun expression. Used
only in ERR calculation for optimization. Default = 1.0e-12.

WEIGHT Multiplies the calculated error by the weight value. Used only in ERR
calculation for optimization. Default = 1.0.

You can use the LAST keyword in TARG_SPEC to indicate the last
event. TRIG_SPEC and TARG_SPEC can also use the syntax:

TRIG AT = tinme

Trigger

TRIG trig var VAL

= g_val <TD = tine_del ay>
+ <CRCSS = ¢> <RI SE

tri
= r> <FALL = f>

TRI G AT = val

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-44

Target

TARG targ _var VAL =
+ <CRGCSS = ¢ |

targ val <TD = tine_del ay>

LAST> <RISE = r | LAST> <FALL = f | LAST>

Table 7-29 TRIG and TARG Syntax

Parameter | Description

TRIG Indicates the beginning of the trigger specification.

trig_val Value of trig_var, which increments the counter for crossings, rises, or falls, by
one.

trig_var Specifies the name of the output variable, that determines the logical beginning
of a measurement. If HSPICE reaches the target before the trigger
activates, .MEASURE reports a negative value.

TARG Indicates the beginning of the target signal specification.

targ_val Specifies the value of the targ_var, which increments the counter for crossings,
rises, or falls, by one.

targ_var Name of the output variable, at which HSPICE determines the propagation delay
with respect to the trig_var.

time_delay | Amount of simulation time that must elapse, before HSPICE enables the
measurement. Simulation counts the number of crossings, rises, or falls, only
after the time_delay value. Default trigger delay is zero.

CROSS =c¢ | Numbers indicate which CROSS, FALL, or RISE event to measure. For example:

RISE =T .meas tran tdlay trig v(1) val=1.5 td=10n

FALL = f

+ rise=2 targ v(2) val=1.5 fall=2

In the above example, rise=2 specifies to measure the v(1) voltage, only on the
first two rising edges of the waveform. The value of these first two rising edges is
1. However, trig v(1) val=1.5 indicates to trigger when the voltage on the rising
edge voltage is 1.5, which never occurs on these first two rising edges. So the
v(1) voltage measurement never finds a trigger.

« RISE =r, the WHEN condition is met, and measurement occurs after the
designated signal has risen r rise times.

 FALL =f, measurement occurs when the designated signal has fallen f fall
times.

A crossing is either a rise or a fall, so for CROSS = ¢, measurement occurs when

the designated signal has achieved a total of ¢ crossing times, as a result of either

rising or falling.

For TARG, the LAST keyword specifies the last event.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-45

Table 7-29 TRIG and TARG Syntax (Continued)

Parameter | Description

LAST

HSPICE measures when the last CROSS, FALL, or RISE event occurs.

e CROSS = LAST, measurement occurs the last time the WHEN condition is
true, for a rising or falling signal.

« FALL = LAST, measurement occurs the last time the WHEN condition is true,
for a falling signal.

* RISE = LAST, measurement occurs the last time the WHEN condition is true,
for a rising signal.

LAST is a reserved word; you cannot use it as a parameter name in the

above .MEASURE statements.

AT = val

Special case for trigger specification. val is:

» Time for TRAN analysis.

* Frequency for AC analysis.

» Parameter for DC analysis.

The trigger determines where measurement starts.

HSPICE Example

. MEASURE TRAN tdlay TRIG V(1) VAL = 2.5 TD = 10n

+ RISE = 2 TARG V(2) VAL = 2.5 FALL = 2

This example measures propagation delay between nodes 1 and 2,
for a transient analysis. HSPICE measures the delay from the
second rising edge of the voltage at node 1, to the second falling
edge of node 2. The measurement begins when the second rising
voltage at node 1 is 2.5 V, and ends when the second falling voltage
atnode 2 is 2.5 V. The TD = 10n parameter counts the crossings,
after 10 ns has elapsed. HSPICE prints results as tdlay = <value>.

. MEASURE TRAN riset TRIGI(Ql) VAL = 0.5m RISE = 3
+ TARG I (Ql) VAL = 4.5mRISE = 3

. MEASURE pwi dt h TRIGAT = 10n TARG V(IN) VAL = 2.5 CRCSS = 3

In the last example, TRIG. AT = 10n starts measuring time att = 10
ns, in the transient analysis. The TARG parameters end time
measurement, when V(IN) = 2.5V, on the third crossing. pwidth is
the printed output variable.

Simulation Output: Specifying User-Defined Analysis (MEASURE)

7-46

Note: If you use the .TRAN statement with a .MEASURE statement,
do not use a non-zero START time in . TRAN statement, or
the .MEASURE results might be incorrect.

Average, RMS, and Peak Measurements
This .MEASURE statement reports the average, RMS, or peak value
of the specified output variable.

SYNTAX:
. MEASURE < TRAN > out var func var FROM = start TO = end
Table 7-30 Average, RMS, and Peak Syntax

Parameter | Description

varname User-defined variable name for the measurement.

func One of the following keywords:

« AVG: Average area under var, divided by the period of interest.

« MAX: Maximum value of var over the specified interval.

« MIN: Minimum value of var over the specified interval.

 PP: Peak-to-peak: reports the maximum value, minus the minimum of
var over the specified interval.

« RMS: Rootmean squared: calculates the square root of the area under

the var? curve, divided by the period of interest.
* INTEG: Integral of var over the specified period.

out_var Name of the output variable, which can be either the node voltage or the

var branch current of the circuit. You can also use an expression, consisting of
the node voltages or the branch current.

start Starting time of the measurement period.

end Ending time of the measurement period.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-47

EXAMPLE:

1. Inthe example below, the .MEASURE statement calculates the
RMS voltage of the OUT node, from Ons to 10ns. It then labels
the result RMSVAL:

. MEAS TRAN RVMSVAL RMS V(QUT) FROM = ONS TO = 10NS

2. In the example below, the .MEASURE statement finds the
maximum current of the VDD voltage supply, between 10ns and
200ns in the simulation. The result is called MAXCUR.

. MEAS MAXCUR MAX | (VDD) FROM = 10NS TO = 200NS

3. In the example below, the .MEASURE statement uses the ratio
of V(OUT) and V(IN) to find the peak-to-peak value, in the
interval of Ons to 200ns.

. MEAS P2P PP PAR(‘ V(QUT)/V(IN)’) FROM = ONS TO = 200NS

FIND and WHEN Functions

The FIND and WHEN functions specify to measure:

* Any independent variables (time, frequency, parameter).

* Any dependent variables (voltage or current, for example).

« Derivative of a dependent variable, if a specific event occurs.

You can use these measure statements in unity gain frequency or
phase measurements. You can as use these statements to measure
the time, frequency, or any parameter value:

* When two signals cross each other.
 When a signal crosses a constant value.

The measurement starts after a specified time delay, TD. To find a
specific event, set RISE, FALL, or CROSS to a value (or parameter),
or specify LAST for the last event.

Simulation Output: Specifying User-Defined Analysis (MEASURE)

7-48

LAST is a reserved word; you cannot use it as a parameter name in
the above measure statements. For definitions of parameters of the
measure statement, see Displaying Simulation Results on page 7-4.

SYNTAX:

. MEASURE <DC| TRAN] AC> result WHEN out _var = val <TD = val >
+ <RSE =71 | LAST > < FALL = f | LAST > < CRCSS = ¢ | LAST >
+ <GOAL = val > <M NVAL = val > <WEl GHT = val >

. MEASURE <DC| TRAN| AC> result WHEN out _varl = out_var?2
+ <TD=val > < RSE =r | LAST > < FALL = f | LAST >
+ < CRCSS = c¢| LAST > <GOAL = val > <M NVAL = val >

+ <WElI GHT = val >

. MEASURE <DC| TRAN| AC> result FIND out _varl

+ WHEN out _var2 = val < TD =val > < RISE =r | LAST >
+ < FALL = f | LAST > < CRCSS = c¢| LAST > <@GOAL = val >
+ <M NVAL = val > <WEl GHT = val >

. MEASURE <DC| TRAN| AC> result FIND out_varl
+ WHEN out _var2 = out _var3 <TD = val > < RISE =r
+ < FALL = f | LAST > <CRCSS = ¢ | LAST> <GOAL =

| LAST >
val >

+ <M NVAL = val > <WEl GHT = val >

. MEASURE <DC| TRAN| AC> result FIND out_varl AT = val
+ <@GOAL = val > <M NVAL = val > <WEI GHT = val >

Parameter Definitions
Table 7-31 FIND and WHEN Syntax

Parameter Description
CROSS =c The numbers indicate which occurrence of a CROSS, FALL, or RISE event
RISE = r starts measuring.
FALL = f » For RISE =, after the designated signal rises r rise times, the WHEN
condition is met, and measurement begins.
» For FALL = f, measurement starts when the designated signal has fallen
f fall times.
A crossing is a rise or a fall. For CROSS = ¢, measurement starts when the
designated signal has achieved a total of ¢ crossing times, as a result of
either rising or falling.
<DC|AC| Analysis type for the measurement. If you omit this parameter, HSPICE
TRAN> assumes the last analysis type that you requested.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-49

Table 7-31 FIND and WHEN Syntax (Continued)

Parameter Description
FIND Selects the FIND function.
GOAL Desired .MEASURE value. Optimization uses this value in ERR calculation.

The following equation calculates the error:
ERRfun = (GOAL —result)/GOAL .

LAST Starts measurement at the last CROSS, FALL, or RISE event.

* For CROSS = LAST, measurement starts the last time the WHEN
condition is true, for either a rising or falling signal.

* For FALL = LAST, measurement starts the last time the WHEN condition
is true, for a falling signal.

¢ For RISE = LAST, measurement starts the last time the WHEN condition
is true for a rising signal.

LAST is a reserved word. Do not use it as a parameter name in

these .MEASURE statements.

MINVAL If the absolute value of GOAL is less than MINVAL, then MINVAL replaces
the GOAL value in the denominator of the ERRfun expression. Used only in
ERR calculation for optimization. Default = 1.0e-12.

out_var(1,2,3) These variables establish conditions that start a measurement.

result Name of a measured value, in the HSPICE output.
TD Time at which measurement starts.
WEIGHT Multiplies the calculated error by the weight value. Used only in ERR
calculation for optimization. Default = 1.0.
WHEN Selects the WHEN function.
EXAMPLE:

In the following example, the first measurement, TRT, calculates the
difference between V(3) and V(4), when V(1) is half the voltage of
V(2) at the last rise event.

The second measurement, STIME, finds the time when V(4) is 2.5V
at the third rise-fall event. A CROSS event is a rising or falling edge.
. MEAS TRAN TRT FI ND PAR(‘V(3)-V(4)’)

WHEN V(1) =PAR(* V(2)/2’') + RISE = LAST
. MEAS STIME WHEN V(4) = 2.5 CROSS = 3

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-50

Equation Evaluation

Use this statement to evaluate an equation, that is a function of the
results of previous .MEASURE statements. The equation must not
be a function of node voltages or branch currents. The syntax is:

. MEASURE <DC| TRAN| AC> result PARAM = ’equati on’
+ <GOAL = val > <M NVAL = val >

Average, RMS, MIN, MAX, INTEG, and PP

Average (AVG), RMS, MIN, MAX, and peak-to-peak (PP)
measurement modes report statistical functions of the output
variable, rather than analysis values.

* AVG calculates the area under an output variable, divided by the
periods of interest.

 RMSdivides the square root of the area under the output variable
square, by the period of interest.

* MIN reports the minimum value of the output function, over the
specified interval.

* MAX reports the maximum value of the output function, over the
specified interval.

* PP (peak-to-peak) reports the maximum value, minus the
minimum value, over the specified interval.

Note: AVG, RMS, and INTEG have no meaning in a DC data sweep,
so if you use them, HSPICE issues a warning message.

SYNTAX:

. MEASURE <DC| AC| TRAN> result func out_var <FROM = val >
+ <TO = val > <GOAL = val > <M NVAL = val > <WEl GHT = val >

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-51

Table 7-32 AVG, RMS, MIN, MAX, and PP Syntax

Parameter Description
<DCJ|AC|TRAN> | Specifies the analysis type for the measurement. If you omit this parameter,
HSPICE assumes the last analysis mode that you requested.
FROM Specifies the initial value for the func calculation. For transient analysis, this
value is in units of time.
TO Specifies the end of the func calculation.
GOAL Specifies the .MEASURE value. Optimization uses this value for ERR
calculation. This equation calculates the error:
ERRfun = (GOAL —result)/ GOAL
MINVAL If the absolute value of GOAL is less than MINVAL, MINVAL replaces the
GOAL value in the denominator of the ERRfun expression. Used only in
ERR calculation for optimization. Default = 1.0e-12.
func Indicates one of the measure statement types:
* AVG (average): Calculates the area under the out_var, divided by the
periods of interest.
 MAX (maximum): Reports the maximum value of the out_var, over the
specified interval.
* MIN (minimum): Reports the minimum value of the out_var, over the
specified interval.
» PP (peak-to-peak): Reports the maximum value, minus the minimum
value, of the out_var, over the specified interval.
* RMS (root mean squared): Calculates the square root of the area under
the out_var2 curve, divided by the period of interest.
result Name of the measured value, in the output. The value is a function of the
variable (out_var) and func.
out_var Name of any output variable whose function (func) the simulation measures.
WEIGHT Multiplies the calculated error, by the weight value. Used only in ERR

calculation for optimization. Default = 1.0.

Simulation Output: Specifying User-Defined Analysis (MEASURE)

7-52

EXAMPLE 1:
. MEAS TRAN avgval AVG V(10) FROM = 10ns TO = 55ns

The example above calculates the average nodal voltage value for
node 10, during the transient sweep, from the time 10 ns to 55 ns. It
prints out the result as avgval.

EXAMPLE 2:

. MEAS TRAN MAXVAL MAX V(1,2) FROM = 15ns TO = 100ns

The preceding example finds the maximum voltage difference
between nodes 1 and 2, for the time period from 15 ns to 100 ns.
EXAMPLE 3:

. MEAS TRAN M NVAL M N V(1,2) FROM = 15ns TO = 100ns
. MEAS TRAN P2PVAL PP | (ML) FROM = 10ns TO = 100ns

INTEGRAL Function

The INTEGRAL function reports the integral of an output variable,
over a specified period.

SYNTAX:

. MEASURE <DC| AC| TRAN> result | NTEGRAL out _var
+ <FROM = val > <TO = val > <GOAL = val > <M NVAL = val >
+ <\\El GHT = val >

The INTEGRAL function (with func), uses the same syntax as the
average (AVG), RMS, MIN, MAX, and peak-to-peak (PP)
measurement mode, to defined the INTEGRAL (INTEG).
EXAMPLE:

The following example calculates the integral of I(cload), from 10 ns
to 100 ns.

. MEAS TRAN charge INTEG I (cl oad) FROM = 10ns TO = 100ns

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-53

DERIVATIVE Function

The DERIVATIVE function provides the derivative of:

« An output variable, at a specified time or frequency.

* Any sweep variable, depending on the type of analysis.

» A specified output variable, when some specific event occurs.

SYNTAX:

. MEASURE <DC| AC| TRAN> result DERI VATI VE out _var
+ AT = val <GOAL = val > <M NVAL = val > <WEI GHT = val >

. MEASURE <DC| AC| TRAN> result DERI VATI VE out _var

+ WHEN var2 = val <RISE = r | LAST> <FALL = f | LAST>
+ <CRCSS = ¢ | LAST> <TD = tdval > <GOAL = goal val >

+ <M NVAL = m nval > <WElI GHT = wei ghtval >

. MEASURE <DC| AC| TRAN> result DERI VATI VE out _var

+ WHEN var2 = var3 <RISE = r | LAST> <FALL = f | LAST>
+ <CRCSS = ¢ | LAST> <TD = tdval > <GOAL = goal val >

+ <M NVAL = m nval > <WElI GHT = wei ghtval >

Table 7-33 Derivative Function Syntax

Parameter Description

AT =val Value of out_var, at which the derivative is found.

CROSS =c The numbers indicate which occurrence of a CROSS, FALL, or RISE event
RISE = r starts a measurement.

FALL = f For RISE =r, when the designated signal has risen r rise times, the WHEN
condition is met, and measurement starts.

For FALL = f, measurement starts when the designated signal has fallen f fall
times.

A crossing is either a rise or a fall, so for CROSS = ¢, measurement starts
when the designated signal has achieved a total of ¢ crossing times, as a
result of either rising or falling.

<DC|AC| Specifies the analysis type to measure. If you omit this parameter, HSPICE
TRAN> assumes the last analysis mode that you requested.

DERIVATIVE | Selects the derivative function. You can abbreviate to DERIV.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-54

Table 7-33 Derivative Function Syntax (Continued)

Parameter Description

GOAL Specifies the desired .MEASURE value. Optimization uses this value for
ERR calculation. This equation calculates the error:

ERRfun = (GOAL —result)/GOAL

LAST Measures when the last CROSS, FALL, or RISE event occurs.

CROSS = LAST, measures the last time the WHEN condition is true, for a
rising or falling signal.

FALL = LAST, measures the last time WHEN is true, for a falling signal.
RISE = LAST, measures the last time WHEN is true, for a rising signal.
LAST is a reserved word; do not use it as a parameter name in the

above .MEASURE statements.

MINVAL If the absolute value of GOAL is less than MINVAL, MINVAL replaces the
GOAL value in the denominator of the ERRfun expression. Used only in ERR
calculation for optimization. Default = 1.0e-12.

out_var Variable for which HSPICE finds the derivative.

result Name of the measured value, in the output.

TD Identifies the time when measurement starts.

var(2,3) These variables establish conditions that start a measurement.

WEIGHT Multiplies the calculated error, between result and GOAL, by the weight value.
Used only in ERR calculation for optimization. Default = 1.0.

WHEN Selects the WHEN function.

EXAMPLE 1:

The following example calculates the derivative of V(out), at 25 ns:

. MEAS TRAN slew rate DERIV V(out) AT = 25ns

EXAMPLE 2:

The following example calculates the derivative of v(1), when v(1) is
equal to 0.9*vdd:

. MEAS TRAN sl ew DERIV v(1) WHEN v(1) =’ 0.90*vdd’

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-55

EXAMPLE 3:

The following example calculates the derivative of VP (output)/360.0,
when the frequency is 10 kHz:.

. MEAS AC del ay DERIV ’ VP(output)/360.0° AT = 10khz

ERROR Function

The relative error function reports the relative difference between
two output variables. You can use this format in optimization and
curve-fitting of measured data. The relative error format specifies the
variable to measure and calculate, from the .PARAM variable. To
calculate the relative error between the two, HSPICE uses the ERR,
ERR1, ERR2, or ERR3 function. With this format, you can specify a
group of parameters to vary, to match the calculated value and the

measured data.

SYNTAX:

. MEASURE <DC| AC| TRAN> result ERRfun neas_var cal c_var
+ <MNVAL = val> < IGNORE | YM N = val > <YMAX = val >
+ <WElI GHT = val > <FROM = val > <TO = val >

Table 7-34 ERROR Function Syntax

Parameter Description

<DC|AC|TRAN> | Specifies the analysis type, for the measurement. If you omit this parameter,
HSPICE assumes the last analysis mode that you requested.

result Name of the measured result, in the output.

ERRfun ERRfun indicates which error function to use: ERR, ERR1, ERR2, or ERRS.

meas_var Name of any output variable or parameter, in the data statement. M denotes
the meas_var, in the error equation.

calc_var Name of the simulated output variable or parameter, in the . MEASURE
statement, to compare with meas_var. C is the calc_var in the error equation.

IGNOR|YMIN If the absolute value of meas_var is less than the IGNOR value, then the

ERRfun calculation does not consider this point. Default = 1.0e-15.

Simulation Output: Specifying User-Defined Analysis (MEASURE)

7-56

Table 7-34 ERROR Function Syntax (Continued)

Parameter Description

FROM Specifies the beginning of the ERRfun calculation. For transient analysis, the
from value is in units of time. Defaults to the first value of the sweep variable.

WEIGHT Multiplies the calculated error, by the weight value. Used only in ERR
calculation for optimization. Default = 1.0.

YMAX If the absolute value of meas_var is greater than the YMAX value, then the
ERRfun calculation does not consider this point. Default = 1.0e+15.

TO End of the ERRfun calculation. Default is last value of the sweep variable.

MINVAL If the absolute value of meas_var is less than MINVAL, MINVAL replaces the
meas_var value in the denominator of the ERRfun expression. Used only in
ERR calculation for optimization. Default = 1.0e-12.

Error Equations

ERR

1. ERR sums the squares of (M-C)/max (M, MINVAL) for each point.
2. It then divides by the number of points.

3. Finally, it calculates the square root of the result.

- M (meas_var) is the measured value of the device or circuit
response.

- C (calc_var) is the calculated value of the device or circuit
response.

- NPTS is the number of data points.

NPTS _ 1/2
ERR = O Mi=% o
- NPTS 2 gnax(MlNVALM)E
=1

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-57

ERR1

ERR1 computes the relative error at each point. For NPTS points,
HSPICE calculates NPTS ERRL1 error functions. For device
characterization, the ERR1 approach is more efficient than the other
error functions (ERR, ERR2, ERR3).

M, —C;

I =1,NPTS
max (M| NVAL,I\/Ii)

ERRli =

HSPICE does not print out each calculated ERR1 value. When you
set the ERR1 option, HSPICE calculates an ERR value, as follows:

1 NPTS 1/2

= | — 2
ERR = | 5o==0 5 ERRL
i=1

ERR2

This option computes the absolute relative error, at each point. For
NPTS points, HSPICE calls neTs error functions.

M. —C.
ERR2: = ! , = 1,NPTS
' |max(MINVALM,)
The returned value printed for ERR2 is:
. NPTS
ERR = m[j Z ERRZi
=1

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-58

ERRS3
M.

|
i
|Iog [max(MINVAL,

tlog

=1,NPTS

ERRSi =

M;P1|
The + and - signs correspond to a positive and negative M/C ratio.

Note: If the M measured value is less than MINVAL, HSPICE uses
MINVAL instead. If the absolute value of M is less than the
IGNOR | YMIN value, or greater than the YMAX value, the
error calculation does not consider this point.

Arithmetic Expression Measurements

The expression option is an arithmetic expression, that uses results
from other prior MEASURE statements.

SYNTAX:
. MEASURE < TRAN > var nane PARAM = “expression”

EXAMPLE:

In the example below, the first two measurements, V3MAX and
V2MIN, set up the variables for the third measurement statement:

. MEAS TRAN V3MAX MAX V(3) FROM ONS TO 100NS
. MEAS TRAN V2M N M N V(2) FROM ONS TO 100NS
. MEAS VARG PARAM = “(V2M N + V3MAX)/ 2"

 V3MAX is the maximum voltage of V(3) between Ons and 100ns
of the simulation.

* V2MIN is the minimum voltage of V(2) during that same interval.

* VARG is the mathematical average of the V3AMAX and V2MIN
measurements.

Simulation Output: Specifying User-Defined Analysis (MEASURE)
7-59

Note: Expressions used in arithmetic expression must not be a
function of node voltages or branch currents. Expressions
used in all other MEASURE statements can contain either
node voltages or branch currents, but must not use results
from other MEASURE statements.

.DOUT Statement: Expected Digital Output Signal

The digital output (.DOUT) statement specifies the expected final
state of an output signal, in HSPICE.

During simulation, HSPICE compares simulation results with the
expected output. If the states are different, HSPICE reports an error.

SYNTAX:

The .DOUT statement can use either of two syntaxes. In both
syntaxes, the time and state parameters describe the expected
output of the nd node.

The first syntax specifies a single threshold voltage, VTH. A voltage
level above VTH is high; any level below VTH is low.

.DOUT nd VITH (tine state < tinme state >)
Table 7-35 .DOUT Syntax

Parameter | Description

nd is the node name.

time is an absolute timepoint.

state is the expected condition of the nd node at the specified time:
« 0 expect ZERO,LOW.
e 1 expect ONE,HIGH.

* else Don't care.

VTH is the single voltage threshold.

Simulation Output: .DOUT Statement: Expected Digital Output Signal
7-60

The second syntax defines a threshold for both a logic high (VHI)
and low (VLO).

.DOUT nd VLOVH (time state <tinme state >)

Table 7-36 .DOUT Syntax with Thresholds

Parameter | Description

VLO is the voltage of the logic-low state

VHI is the voltage of the logic-high state

nd is the node name

time is an absolute timepoint

state is the expected condition of the nd node at the specified time:
e 0 expect ZERO,LOW.
e 1 expect ONE,HIGH.
+ else Don't care.

Note: If you specify VTH, VLO, and VHI, then HSPICE processes
only VTH, and ignores VLO and VHI.

For both cases, the time, state pair describes the expected output.
During simulation, HSPICE compares the simulated results against
the expected output vector. If the states are different, HSPICE
reports an error message. The legal values for state are:

Table 7-37 State Values

Value Description

0 expect ZERO

1 expect ONE

X, X do not care

U,u do not care

Z,z expect HIGH IMPEDANCE (don't care)

Simulation Output: .DOUT Statement: Expected Digital Output Signal
7-61

EXAMPLE:

The .PARAM statement in the example below sets the VTH variable
value to 3. The .DOUT statement, operating on the nodel node,
uses VTH as its threshold voltage.

. PARAM VTH = 3.0
. DOUT nodel VTH(0.0n 0 1.0n 1
+ 2.0n X 3.0n U4.0n Z 5.0n 0)

When nodel is above 3V, itis a logic 1; otherwise, it is a logic 0.
» At Ons, the expected state of nodel is logic-low.

* At 1ns, the expected state is logic-high.

« At 2ns, 3ns, and 4ns, the expected state is “do not care”.

» At b5ns, the expected state is again logic-low.

Reusing Simulation Output as Input Stimuli

You can use the .STIM statement to reuse the results (output) of one
simulation, as input stimuli in a new simulation.

Note: .STIM is an abbreviation of .STIMULI. You can use either
form to specify this statement in HSPICE.

The .STIM statement specifies:

» Expected stimulus (PWL Source, DATA CARD, or VEC FILE).
* Signals to transform.

* Independent variables.

One .STIM statement produces one corresponding output file.

SYNTAX:

Brackets [] enclose comments, which are optional.

.stim<tran| ac| dc> PW.| DATA| VEC
+ <fil enanme=out put _fil enane> ...

Simulation Output: Reusing Simulation Output as Input Stimuli

7-62

PWL Source

You can use this syntax only in transient analysis.

.stinftran] PW. [filename=output_filenane]

+
+
+

[nanel=] ovarl [nodel=n+] [node2=n-]
[[nanme2=] ovar 2 [nodel=n+] [node2=n-] ...]
[fromeval] [to=val] [npoints=val]

.stinftran] PW. [filename=output_filenane]

+
+
+

[nanel=] ovarl [nodel=n+] [node2=n-]
[[nanme2=] ovar 2 [nodel=n+] [node2=n-] ...]
indepvar=[(]t1 [t2 ...[)]]

Table 7-38 .STIM PWL Source Syntax

Parameter | Description

tran Transient simulation.

filename Output file name. If you do not specify a file, HSPICE uses the input filename.

namei PWL Source Name that you specify. The name must start with V (for a voltage
source) or | (for a current source).

ovari Output variable that you specify. ovar can be:
* Node voltage.
» Element current.
» Parameter string. If you use a parameter string, you must specify namel.
For example:
v(1), i(rl), v(2,1), par('v(1)+v(2)")

nodel Positive terminal node name.

node2 Negative terminal node name.

from Keyword; specifies the time to start output of simulation results. For transient
analysis, uses the time units that you specified.

npoints Number of output time points.

to Keyword; specifies the time to end output of simulation results. For transient
analysis, uses the time units that you specified. The from value can be greater
than the to value.

indepvar Keyword; specifies dispersed (independent-variable) time points. You must

specify dispersed time points in increasing order.

Simulation Output: Reusing Simulation Output as Input Stimuli
7-63

Data Card

.stinftran |ac |dc] DATA [filename=output_filenane]
dat ananme [nanel=] ovarl

[[name2=]ovar2 ...] [from= val] [to=val]

[npoi nts=val] [i ndepout=val]

+
+
+

.stinftran |ac |dc] DATA [filename=output_filenane]

+ datanane [nanel=] ovarl
+ [[name2=]ovar2 ...] indepvar=[(]tl [t2 ...[)]]
+ [indepout =val]
Table 7-39 .STIM Data Card Syntax
Parameter | Description
tran | ac | dc | Selects the simulation type: transient, AC, or DC.
filename Output file name. If you do not specify a file, HSPICE uses the input filename.
dataname Name of the data card to generate.
from Keyword; specifies the time to start output of simulation results. For transient
analysis, uses the time units that you specified.
to Keyword; specifies the time to end output of simulation results. For transient
analysis, uses the time units that you specified.
namei Name of a parameter of the data card to generate.
npoints Number of output independent-variable points.
indepvar Keyword; specifies dispersed independent-variable points.
indepout Indicates whether to generate the independent variable column.
» indepout, indepout = 1, or on, produces the independent variable column.
You can specify the independent-variables in any order.
» indepout= 0 or off (default) does not create an independent variable column.
You can place the indepout field anywhere, after the ovari field.

Digital Vector File
You can use this syntax only in transient analysis.

.stim[tran] VEC [fil enane=out put _fil enane]

+
+
+

vt h=val vtl=val [voh=val] [vol =val] [nanel=] ovarl
[[name2=] ovar2 ...] [fromrval] [to=val]
[npoi nt s=val]

Simulation Output: Reusing Simulation Output as Input Stimuli

7-64

.stim[tran] VEC [fil enane=out put _fil enane]

+ vth=val vtl=val[voh=val] [vol =val] [nanel=] ovarl
+ [[name2=]ovar2 ...] indepvar=[(]tl [t2 ...[)]]
Table 7-40 .STIM Vector File Syntax
Parameter | Description
namei Signal name that you specify.
filename Output file name. If you do not specify a file, HSPICE uses the input filename.
ovari Output variable that you specify. ovar must be a node voltage.
from Keyword; specifies the time to start output of simulation results. For transient
analysis, uses the time units that you specified.
to Keyword; time to the end output of simulation results. For transient analysis,
uses the specified time units.The from value can be greater than the to value.
npoints Number of output time points.
indepvar Keyword; specifies dispersed independent-variable points. You must specify
dispersed time points in increasing order.
vth High voltage threshold.
vil Low voltage threshold.
voh Logic-high voltage for each output signal.
vol Logic-low voltage for each output signal.
ovari Output variable that you specify. ovar can be:
* Node voltage.
* Element current.
« Element templates.
e Parameter string.
For example:
v(1), i(rl), v(2,1), par('v(1)+v(2)"), LX1(m1), LX2(m1)

Simulation Output: Reusing Simulation Output as Input Stimuli
7-65

Output Files

The .STIM statement generates the following output files:

Table 7-41 .STIM Output Files

Output File Type Extension
PWL Source PpwiS$_tr#
The .STIM statement writes PWL source results to output_file.pwl$_tr#.
This output file results from a .stim <tran> pwl statement in the input file.
Data Card .dat$_tr#, .dat$_ac#, or .dat$_sw#

The .STIM statement writes DATA Card results to output_file.dat$_sw#,
output_file.dat$_ac#, or output_file.dat$_tr#. This output file is the result
of a .stim <tran| ac|dc> data statement in the input file.

Digital Vector File

.vec$_tr#

The .STIM statement writes Digital Vector File results to
output_file.vec$_tr#. This output file is the result of a .stim <tran> vec
statement in the input file.

Table 7-42 .STIM Symbols

Symbol Description

tr| ac | sw e tr =transient analysis.
e ac = AC analysis.
» sw = DC sweep analysis.

Either a sweep number, or a hard-copy file number. For a single sweep
run, the default number is 0.

$ Serial number of the current .STIM statement, within statements of the

same stimulus type (pwl, data, or vec).

$=0 ~ n-1 (nis the number of the .STIM statement of that type). The initial
$value is 0.

For example, if you specify three .STIM pwl statements, HSPICE
generates three PWL output files, with the suffix names pwl0_tr#,
pwll_tr#, and pwl2_tr#.

Simulation Output: Reusing Simulation Output as Input Stimuli

7-66

Element Template Listings
Table 7-43 Resistor

Name Alias Description

G Lv1 Conductance, at analysis temperature.
R Lv2 Resistance, at reference temperature.
TC1 Lv3 First temperature coefficient.
TC2 Lv4 Second temperature coefficient.

Table 7-44 Capacitor

Name Alias Description
CEFF Lv1 Computed effective capacitance.
IC Lv2 Initial condition.
Q LXO0 Charge, stored in capacitor.
CURR LX1 Current, flowing through capacitor.
VOLT LX2 Voltage, across capacitor.
- LX3 Capacitance (not used after HSPICE release 95.3).

Table 7-45 Inductor

Name Alias Description

LEFF Lv1 Computed effective inductance.

IC Lv2 Initial condition.

FLUX LX0 Flux, in the inductor.

VOLT LX1 Voltage, across inductor.

CURR LX2 Current, flowing through inductor.

- LX4 Inductance (not used after HSPICE release 95.3).

Simulation Output: Element Template Listings
7-67

Table 7-46 Mutual Inductor

Name Alias Description
K Lv1 Mutual inductance.

Table 7-47 Voltage-Controlled Current Source

Name Alias Description

CURR LXO0 Current, through the source, if VCCS.

R LX0 Resistance value, if VCR.

C LX0 Capacitance value, if VCCAP.

cv LX1 Controlling voltage.

CQ LX1 Capacitance charge, if VCCAP.

DI LX2 Derivative of the source current, relative to the control voltage.

ICAP LX2 Capacitance current, if VCCAP.

VCAP LX3 Voltage, across capacitance, if VCCAP.
Table 7-48 Voltage-Controlled Voltage Source

Name Alias Description

VOLT LX0 Source voltage.

CURR LX1 Current, through source.

Ccv LX2 Controlling voltage.

DV LX3 Derivative of the source voltage, relative to the control current.
Table 7-49 Current-Controlled Current Source

Name Alias Description

CURR LX0 Current, through source.

Cl LX1 Controlling current.

DI LX2 Derivative of the source current, relative to the control current.

Simulation Output:
7-68

Element Template Listings

Table 7-50 Current-Controlled Voltage Source

Name Alias Description

VOLT LX0 Source voltage.

CURR LX1 Source current.

Cl LX2 Controlling current.

DV LX3 Derivative of the source voltage, relative to the control current.

Table 7-51 Independent Voltage Source

Name Alias Description

VOLT Lv1 DCltransient voltage.
VOLTM Lv2 AC voltage magnitude.
VOLTP Lv3 AC voltage phase.

Table 7-52 Independent Current Source

Name Alias Description

CURR LvV1 DCltransient current.
CURRM Lv2 AC current magnitude.
CURRP Lv3 AC current phase.

Table 7-53 Diode

Name Alias Description

AREA Lv1 Diode area factor.

AREAX Lv23 Area, after scaling.

IC Lv2 Initial voltage, across diode.

VD LX0 Voltage, across diode (VD), excluding RS (series resistance).

IDC LX1 DC current, through diode (ID), excluding RS. Total diode current
is the sum of IDC and ICAP.

GD LX2 Equivalent conductance (GD).

Simulation Output: Element Template Listings
7-69

Table 7-53 Diode (Continued)

Name Alias Description
QD LX3 Charge of diode capacitor (QD).
ICAP LX4 Current, through the diode capacitor.
Total diode current is the sum of IDC and ICAP.
C LX5 Total diode capacitance.
PID LX7 Photo current, in diode.
Table 7-54 BJT (Sheet 1 of 3)
Name Alias Description
AREA Lv1 Area factor.
ICVBE Lv2 Initial condition, for base-emitter voltage (VBE).
ICVCE Lv3 Initial condition, for collector-emitter voltage (VCE).
MULT Lv4 Number of multiple BJTs.
FT LV5 FT (Unity gain bandwidth).
ISUB LV6 Substrate current.
GSUB Lv7 Substrate conductance.
LOGIC LV8 LOG 10 (IC).
LOGIB LV9 LOG 10 (IB).
BETA LV10 BETA.
LOGBETAI | LV11 LOG 10 (BETA) current.
ICTOL Lv12 Collector current tolerance.
IBTOL LV13 Base current tolerance.
RB LV14 Base resistance.
GRE LV15 Emitter conductance, 1/RE.
GRC LV16 Collector conductance, 1/RC.
PIBC Lv18 Photo current, base-collector.

Simulation Output: Element Template Listings
7-70

Table 7-54 BJT (Sheet 2 of 3)
Name Alias Description
PIBE LV19 Photo current, base-emitter.
VBE LX0 VBE.
VBC LX1 Base-collector voltage (VBC).
CCO LX2 Collector current (CCO).
CBO LX3 Base current (CBO).
GPI LX4 g, =1tib /ivbe, constant vbc.
GU LX5 gy = 'ib /*vbc, constant vbe.
GM LX6 Om = lic /*vbe+ lic [*vbe, constant vce.
GO LX7 go = tic *vce, constant vbe.
QBE LX8 Base-emitter charge (QBE).
CQBE LX9 Base-emitter charge current (CQBE).
QBC LX10 Base-collector charge (QBC).
cQBC LX11 Base-collector charge current (CQBC).
QCs LX12 Current-substrate charge (QCS).
CQcCs LX13 Current-substrate charge current (CQCS).
QBX LX14 Base-internal base charge (QBX).
CcQBX LX15 Base-internal base charge current (CQBX).
GXO LX16 1/Rbeff Internal conductance (GXO).
CEXBC LX17 Base-collector equivalent current (CEXBC).
- LX18 Base-collector conductance (GEQCBO), (not used in HSPICE
releases after 95.3).
CAP_BE LX19 cbe capacitance (C).
CAP_IBC LX20 cbc internal base-collector capacitance (Cp).

Simulation Output: Element Template Listings

7-71

Table 7-54

BJT (Sheet 3 of 3)

Name Alias Description
CAP_SCB LX21 csc substrate-collector capacitance, for vertical transistors.
csb substrate-base capacitance, for lateral transistors.

CAP_XBC LX22 cbcx external base-collector capacitance.
CMCMO LX23 YTF*IBE) /*vbc.
VSUB LX24 Substrate voltage.

Table 7-55 JFET
Name Alias Description
AREA Lv1 JFET area factor.
VDS LVvV2 Initial condition, for drain-source voltage.
VGS LV3 Initial condition, for gate-source voltage.
PIGD LV16 Photo current, gate-drain in JFET.
PIGS LvV17 Photo current, gate-source in JFET.
VGS LX0 VGS.
VGD LX1 Gate-drain voltage (VGD).
CGSO LX2 Gate-to-source (CGSO).
CDO LX3 Drain current (CDO).
CGDO LX4 Gate-to-drain current (CGDO).
GMO LX5 Transconductance (GMO).
GDSO LX6 Drain-source transconductance (GDSO).
GGSO LX7 Gate-source transconductance (GGSO).
GGDO LX8 Gate-drain transconductance (GGDO).
QGS LX9 Gate-source charge (QGS).
CQGSs LX10 Gate-source charge current (CQGS).
QGD LX11 Gate-drain charge (QGD).
CQGD LX12 Gate-drain charge current (CQGD).
CAP_GS LX13 Gate-source capacitance.

Simulation Output:
7-72

Element Template Listings

Table 7-55

JFET (Continued)

Name Alias Description

CAP_GD LX14 Gate-drain capacitance.

- LX15 Body-source voltage (not used after HSPICE release 95.3).
QDS LX16 Drain-source charge (QDS).

CQDs LX17 Drain-source charge current (CQDS).

GMBS LX18 Drain-body (backgate) transconductance (GMBS).

Table 7-56 MOSFET (Sheet 1 of 3)

Name Alias Description
L Lv1 Channel length (L).
W Lv2 Channel width (W).
AD LV3 Area of the drain diode (AD).
AS Lv4 Area of the source diode (AS).
ICVDS LV5 Initial condition, for drain-source voltage (VDS).
ICVGS LV6 Initial condition, for gate-source voltage (VGS).
ICVBS Lv7 Initial condition, for bulk-source voltage (VBS).
- Lv8 Device polarity:
+ 1=forward
» -1 =reverse (not used after HSPICE release 95.3).
VTH LV9 Threshold voltage (bias dependent).
VDSAT LV10 Saturation voltage (VDSAT).
PD LvV11 Drain diode periphery (PD).
PS Lv12 Source diode periphery (PS).
RDS LV13 Drain resistance (squares), (RDS).
RSS Lvi14 Source resistance (squares), (RSS).
XQC LV15 Charge-sharing coefficient (XQC).
GDEFF LV16 Effective drain conductance (1/RDeff).
GSEFF Lv17 Effective source conductance (1/RSeff).

Simulation Output: Element Template Listings

7-73

Table 7-56

MOSFET (Sheet 2 of 3)

Name Alias Description

CDSAT LV18 Drain-bulk saturation current, at -1 volt bias.

CSSAT Lv19 Source-bulk saturation current, at -1 volt bias.

VDBEFF LV20 Effective drain bulk voltage.

BETAEFF Lv21 BETA, effective.

GAMMAEFF Lv22 GAMMA, effective.

DELTAL Lv23 AL (MOS6 amount of channel length modulation), (valid only for
LEVELs 1, 2, 3 and 6).

UBEFF Lv24 UB effective (valid only for LEVELs 1, 2, 3 and 6).

VG LV25 VG drive (valid only for LEVELs 1, 2, 3 and 6).

VFBEFF LV26 VFB effective.

- Lv31l Drain current tolerance (not used in HSPICE releases after 95.3).

IDSTOL Lv32 Source-diode current tolerance.

IDDTOL Lv33 Drain-diode current tolerance.

COVLGS LV36 Gate-source overlap capacitance.

COVLGD Lv37 Gate-drain overlap capacitance.

COVLGB LV38 Gate-bulk overlap capacitance.

VBS LX1 Bulk-source voltage (VBS).

VGS LX2 Gate-source voltage (VGS).

VDS LX3 Drain-source voltage (VDS).

CDO LX4 DC-drain current (CDO).

CBSO LX5 DC source-bulk diode current (CBSO).

CBDO LX6 DC drain-bulk diode current (CBDO).

GMO LX7 DC-gate transconductance (GMO).

GDSO LX8 DC drain-source conductance (GDSO).

GMBSO LX9 DC-substrate transconductance (GMBSO).

GBDO LX10 Conductance of the drain diode (GBDO).

GBSO LX11 Conductance of the source diode (GBSO).

Simulation Output: Element Template Listings

7-74

Table 7-56 MOSFET (Sheet 3 of 3)

Name Alias Description

Meyer and Charge Conservation Model Parameters

QB LX12 Bulk charge (QB).

cQB LX13 Bulk-charge current (CQB).

QG LX14 Gate charge (QG).

CQG LX15 Gate-charge current (CQG).

QD LX16 Channel charge (QD).

CQD LX17 Channel-charge current (CQD).

CGGBO LX18 CGGBO = 9Qg/dVgbh = CGS + CGD + CGB

CGDBO LX19 CGDBO = 0Qg/oVdb, (for Meyer CGD = -CGDBO)

CGSBO LX20 CGSBO = 0Qg/dVsb, (for Meyer CGS = -CGSBO)

CBGBO LX21 CBGBO = 0Qb/dVgb, (for Meyer CGB = -CBGBO)

CBDBO LX22 CBDBO = dQb/aVdb

CBSBO LX23 CBSBO = 0Qb/dVsb

QBD LX24 Drain-bulk charge (QBD).

- LX25 Drain-bulk charge current (CQBD), (not used in HSPICE releases
after 95.3).

QBS LX26 Source-bulk charge (QBS).

- LX27 Source-bulk charge current (CQBS), (not used after HSPICE
release 95.3).

CAP_BS LX28 Bulk-source capacitance.
CAP_BD LX29 Bulk-drain capacitance.

CQs LX31 Channel-charge current (CQS).
CDGBO LX32 CDGBO = dQd/aVgb
CDDBO LX33 CDDBO = 9Qd/aVdb
CDSBO LX34 CDSBO = dQd/aVsb

Simulation Output: Element Template Listings
7-75

Table 7-57 Saturable Core Element

Name Alias Description

MU LX0 Dynamic permeability (mu), Weber/(amp-turn-meter).
H LX1 Magnetizing force (H), Ampere-turns/meter.

B LX2

Magnetic flux density (B), Webers/meter?.

Table 7-58 Saturable Core Winding

Name Alias Description

LEFF Lv1 Effective winding inductance (Henry).
IC Lv2 Initial condition.

FLUX LX0 Flux, through winding (Weber-turn).
VOLT LX1 Voltage, across winding (Volt).

Simulation Output: Element Template Listings

7-76

Simulation Options

This chapter describes the options that you can use to modify
various aspects of a Synopsys HSPICE simulation, including:

output types
accuracy
speed
convergence

This chapter explains all options available in the .OPTION statement
in HSPICE, including the following topics:

Setting Control Options

General Control Options

Model Analysis Options\

DC Operating Point, DC Sweep, and Pole/Zero Options
Transient and AC Small Signal Analysis Options

8-1

Setting Control Options

This section describes how to set control options.

.OPTION Statement

To set control options, use .OPTION statements. You can set any
number of options in one .OPTION statement, and you can include
any number of .OPTION statements in an input netlist file. Table 8-2
on page 8-3 lists all control options. Descriptions of the options
follow the table. For descriptions of options that are relevant to a
specific simulation type, see the appropriate DC, transient, and AC
analysis chapters.

Most options default to 0 (OFF) when you do not assign a value,
using either .OPTION <opt> = <val> or the option with no
assignment: .OPTION <opt>. Each option description in this section
also shows the default value.

SYNTAX:
.OPTION optl <opt2 opt3 ...>
Table 8-1 .OPTION OPT Syntax

Parameter | Description

optl ... Specifies any input control options. Many options are in the form
<opt> = x, where <opt> is the option nhame and x is the value
assigned to that option. This section describes all options.

Simulation Options: Setting Control Options
8-2

EXAMPLE:

To reset options, set them to zero (. oPTI ON <opt> = 0). To redefine an
option, enter a new . opTi oN statement; HSPICE uses the last
definition. For example, set the Bri EF option to 1, to suppress the
printout. Then reset Bri EF to o later in the input file, to resume the
printout.

.OPTION BRIEF $ Sets BRIEF to 1 (turns it on)
* Netlist, nodels,

_OPTION BRIEF = 0 $ Turns BRIEF off
Opti ons Keyword Sunmary

Table 8-2 lists the keywords for the .OPTION statement, grouped by
their typical application. The sections that follow the table, describe
the options listed under each type of analysis.

Table 8-2 .OPTION Keyword Application Table (Sheet 1 of 3)

GENERAL CONTROL MODEL DC OPERATING TRANSIENT and AC

OPTIONS ANALYSIS |POINT, DC SWEEP, |SMALL SIGNAL ANALYSIS
and POLE/ZERO

Input, Interfaces General Accuracy Converge |Accuracy Timestep

Output nce

ACCT ARTIST DCAP ABSH CONVER |ABSH ABSVAR

GE

ACOUT CDS SCALE ABSI CSHDC |ABSY, DELMAX
ABSTOL VNTOL

ALT999 CSDF TNOM ABSMOS |DCFOR |ACCURATE |DVDT

ALT9999 MEASOUT ABSV DCHOLD |ACOUT FS
VNTOL

ALTER DLENCSDF

BEEP

BINPRNT MENTOR MOSFETs ABSVDC DCON CHGTOL FT

Simulation Options: Setting Control Options

8-3

Table 8-2

.OPTION Keyword Application Table (Sheet 2 of 3)

GENERAL CONTROL MODEL |DC OPERATING TRANSIENT and AC
OPTIONS ANALYSIS |POINT, DC SWEEP, |SMALL SIGNAL ANALYSIS
and POLE/ZERO
BRIEF POST CVTOL DI DCSTEP |CSHUNT IMIN, ITL3
coO PROBE DEFAD |KCLTEST |DCTRAN |GSHUNT IMAX, ITL4
INGOLD PSF DEFAS |MAXAMP DV DI ITL5
LENNAM SDA DEFL RELH GMAX | GMIN RELVAR
LIST ZUKEN DEENRD |RELI GMINDC |GSHUNT RMAX
MEASDGT
MEASFAIL
MEASSORT DEFNRS |RELMOS |GRAMP |CSHUNT RMIN
NODE Analysis DEFPD |RELV GSHUNT MAXAMP |SLOPETOL
RLTOL
NOELCK ASPEC DEFPS |RELVDC |ICSWEEP RELH TIMERES
NOMOD LIMPTS DEFW ITLPTRA RELI
N
NOPAGE PARHIER SCALM | Matrix NEWTOL RELQ Algorithm
NOTOP SPICE WL ITL1 OFF RELTOL DVTR
RELV
NUMDGT | SEED ITL2 RESMIN |RISETIME |IMAX
NXX Inductors | NOPIV TRTOL IMIN
OPTLST Error GENK PIVOT, |Pole/Zero VNTOL, LVLTIM
SPARSE ABSV
OPTS BADCHR KLIM CSCAL |Speed MAXORD
PATHNUM | DIAGNOSTIC PIVREF |FMAX |AUTOSTOP [METHOD
PURETP
PLIM NOWARN BJTs PIVREL |FSCAL |BKPSIZ MU

Simulation Options: Setting Control Options

8-4

Table 8-2

.OPTION Keyword Application Table (Sheet 3 of 3)

GENERAL CONTROL MODEL |DC OPERATING | TRANSIENT and AC
OPTIONS ANALYSIS |POINT, DC SWEEP, |SMALL SIGNAL ANALYSIS
and POLE/ZERO
GSCAL
POST WARNLIMIT EXPLI PIVTOL |LSCAL |BYPASS
VERSION
PUTMEAS
SEARCH SPARSE, PZABS | BYTOL Input, Output
STATFL Version Diodes PVOT pz10L [FAST INTERP
VERIFY H9007 EXPLI RITOL |ITLPZ ITRPRT
CPU Input, | XnR, Xnl MBYPASS |UNWRAP
Output
CPTIME CAPTAB |NEWTOL |TRCON
EPSMIN DCCAP
EXPMAX VFLOOR
LIMTIM

Simulation Options: Setting Control Options

8-5

General Control Options

Descriptions of the general control options follow. Descriptions are
alphabetical by keyword, under the sections presented in the table.\

Table 8-3

Input and Output Options (Sheet 1 of 5)

Parameter

Description

ACCT

Reports job accounting and runtime statistics, at the end of the output listing.
The ratio of output points to total iterations, determines simulation efficiency.
Reporting is automatic, unless you disable it. Choices for ACCT are:

» disables reporting
» enables reporting
» enables reporting of matrix statistics

ACOUT

AC output calculation method, for the difference in values of magnitude, phase,
and decibels. Use these values for prints and plots. Default is 1.

The default (ACOUT = 1) selects the HSPICE method, which calculates the
difference of the magnitudes of the values. The SPICE method, ACOUT =0,
calculates the magnitude of the differences in HSPICE.

ALT999,
ALT9999

This option generates up to 1000 (ALT999) or 10,000 (ALT9999) unique output
files, from .ALTER simulation runs. HSPICE appends a number from 0-999
(ALT999) or 0-9999 (ALT9999) to the output file extension. For example, if

a .TRAN analysis has 50 .ALTER statements, the filenames are filename.trO0,
filename.trl, ..., filename.tr50. Without this option, HSPICE overwrites files
after the 36th .ALTER statement.

altchk

By default, HSPICE automatically reports topology errors in the latest
elements, in your top-level netlist. It also reports errors in elements that you
redefine, using the .ALTER statement (altered netlist).

To disable topology checking in redefined elements (that is, to check topology
only in the top-level netlist, but not in the altered netlist), set:

.option altchk=0

By default, .OPTION ALTCHK is set to 1:

.option altchk=1
.option altchk

This enables topology checking, in elements that you redefine using
the .ALTER statement.

BEEP

BEEP=1 sounds an audible tone when simulation returns a message, such as
info: hspice job completed.

BEEP=0 turns off the audible tone.

Simulation Options: General Control Options

8-6

Table 8-3 Input and Output Options (Sheet 2 of 5)

Parameter

Description

BINPRINT

Outputs the binning parameters of the CMI MOSFET model. Currently
available only for Level 57.

BRIEF, NXX

Stops printback of the data file, until HSPICE finds an .OPTION BRIEF = 0, or
the .END statement. It also resets the LIST, NODE, and OPTS options, and
sets NOMOD. BRIEF = 0 enables printback. NXX is the same as BRIEF.

Number of columns for printout: x can be either 80 (for narrow printout) or 132
(for wide carriage printouts). You also can use the . W DTH statement to set the
output width. Default=80.

INGOLD = x

Printout data format. Use INGOLD = 2 for SPICE compatibility in HSPICE.
Default is 0. You can print numeric output from HSPICE, in one of three ways:

INGOLD =0
Specifies engineering format, which expresses exponents as one character:

1G=1e9 1X=1e6 1K=1e3 1M=1e-3
1U =1e-6 1IN = 1e-9 1P = 1e-12
1F = le-15

INGOLD =1

Combines fixed and exponential format (G Format). Uses fixed format for
numbers 0.1 to 999. Uses exponential format for numbers greater than 999, or
less than 0.1.

INGOLD =2

Uses exponential format exclusively (SPICE2G style). Exponential format
generates constant number sizes, suitable for post-analysis tools.

Use .OPTION MEASDGT, with INGOLD, to control the output data format
for MEASURE results.

LENNAM = x

Maximum length of names, in the printout of operating point analysis results.
Default is 8. Maximum x value=16.

LIST, VERIFY

Produces an element summary of the input data to print. Calculates effective
sizes of elements, and the key values.

» BRIEF suppresses the LIST option.
* VERIFY is an alias for LIST.

MEASDGT = X

Formats the .MEASURE statement output, in both the listing file and
the .MEASURE output files (.ma0, .mt0,
.ms0, and so on).

The value of x is typically between 1 and 7, although you can set it as high as
10. Default is 4.0.

Simulation Options: General Control Options
8-7

Table 8-3

Input and Output Options (Sheet 3 of 5)

Parameter

Description

For example, if MEASDGT = 5, then .MEASURE displays numbers as:

» Five decimal digits, for numbers in scientific notation.

» Five digits to the right of the decimal, for numbers between 0.1 and 999.
In the listing (.lis), file, all . MEASURE output values are in scientific notation,
so .OPTION MEASDGT = 5 results in five decimal digits.

Use MEASDGT with .OPTION INGOLD = x to control the output data format.

NODE

Prints a node cross reference table. BRIEF suppresses NODE. The table lists
each node and all elements connected to it. A code indicates the terminal of
each element. A colon (:) separates the code from the element hame.

The codes are:

Diode anode

Diode cathode

BJT base

MOSFET or JFET bulk
BJT collector

MOSFET or JFET drain
BJT emitter

MOSFET or JFET gate
BJT substrate

MOSFET or JFET source

For example, part of a cross reference might look like:
1 M1:B D2:+ Q4:B

This line indicates that the bulk of M1, the anode of D2, and the base of Q4, all
connect to node 1.

+

VuEMmMmoOTw '

NOELCK

No element check; bypasses element checking, to reduce to reduce pre-
processing time for very large files.

NOMOD

Suppresses the printout of model parameters.

NOPAGE

Suppresses page ejects for title headings.

NOTOP

Suppresses topology checks, to increase speed for pre-processing very large
files.

NUMDGT = x

Number of significant digits to print, for output variable values. The value of x
is typically between 1 and 7, although you can set it as high as 10. Default is
4. 0. This option does not affect the accuracy of the simulation.

NXX

Stops printback of the data file, until HSPICE finds an .OPTION BRIEF = 0, or
the .END statement. It also resets the LIST, NODE, and OPTS options, and
sets NOMOD. BRIEF = 0 enables printback. NXX is the same as BRIEF.

Simulation Options: General Control Options

8-8

Table 8-3

Input and Output Options (Sheet 4 of 5)

Parameter

Description

OPTLST =X

Outputs additional optimization information:

* No information (default).

» Prints parameter, Broyden update, and bisection results information.
» Prints gradient, error, Hessian, and iteration information.

* Prints all of the above, and Jacobian.

OPTS

Prints the current settings, for all control options. If you change any of the
default values of the options, the OPTS option prints the values that the
simulation actually uses. The BRIEF option suppresses OPTS.

PATHNUM

Prints subcircuit path numbers, instead of path names.

PLIM = x

Specifies plot size limits, for current and voltage plots:

» Finds a common plot limit, and plots all variables on one graph, at the same
scale

» Enables SPICE-type plots in HSPICE, which create a separate scale and
axis for each plot variable.

This option does not affect post- processing of graph data.

POST _
VERSION = x

Sets the post-processing output version:

* X =9007 truncates the node name in the post-processor output file, to a
maximum of 16 characters.

» X =9601 sets the node name length for the output file, consistent with the
input restrictions (1024 characters).

POST _
VERSION=
2001

Sets the post-processing output version to 2001. This option shows you the
new output file header, which includes the right number of output variables,
rather than * * ** when the number exceeds 9999. If you set. OPTI ON
post versi on=2001 post =2 in the netlist, then HSPICE returns more-
accurate ASCII results.

.option post_version=2001
To use binary values (with double precision) in the output file, include the
following in the input file:

kkkkkkkkkkkkkkkhkkkkkkkkkhkhkkkkkhkhkkkhkkkkkkkhkhkkkkkkkkk

.option post (or post=1) post_version=2001

kkkkkkkkkkkkkkhkkkkkhkkkkkkhkkkkkhkkkhkkkkkkkkhkkkkkhkkkkkkkkkkx

For more accurate simulation results, comment this format.

STATFL

Controls whether HSPICE creates a . st O file.

 statfl=0 (default) outputs a .stO file.
» statfl=1 suppresses the .st0 file.

Simulation Options: General Control Options
8-9

Table 8-3 Input and Output Options (Sheet 5 of 5)
Parameter Description
SEARCH Search path for libraries and included files. HSPICE searches the directory
specified in .OPTION SEARCH, for libraries (file with a .INC suffix) that the
simulation references. Includes these referenced files in the netlist.
VERIFY VERIFY is an alias for LIST.
Table 8-4 CPU Options

Parameter Description

CPTIME = x Sets the maximum CPU time, in seconds, allotted for this simulation job.
When the time allowed for the job exceeds CPTIME, HSPICE prints or plots
the results up to that point, and concludes the job. Use this option if you are
uncertain how long the simulation will take, especially when you debug new
data files. Also see LIMTIM. Default is 1e7 (400 days).

EPSMIN = x Specifies the smallest number that a computer can add or subtract, a
constant value. Default is 1e-28.

EXPMAX =X Specifies the largest exponent that you can use for an exponential, before
overflow occurs. Typical value for an IBM platform is 350.

LIMTIM = x Amount of CPU time reserved to generate prints and plots, if a CPU time limit
(CPTIME = x) terminates simulation. Default=2 (seconds), normally
sufficient for short printouts and plots.

Table 8-5 Interface Options (Sheet 1 of 3)
Parameter Description
ARTIST = x ARTIST = 2 enables the Cadence Analog Artist interface. This option requires
a specific license. Supported on Sun Solaris 2.5/2.7/2.8, HPUX 10.20 and
11.20, and IBM AIX 4.3 platforms only. Not available on Linux platforms.
CDS, SDA CDS = 2 produces a Cadence WSF (ASCII format) post-analysis file, for
Opusl. This option requires a specific license. SDA is the same as CDS.

CSDF Selects Common Simulation Data Format (Viewlogic-compatible graph data

file format).

Simulation Options: General Control Options

8-10

Table 8-5

Interface Options (Sheet 2 of 3)

Parameter

Description

DLENCSDF

If you use the Common Simulation Data Format (Viewlogic graph data file
format) as the output format, this digit length option specifies how many digits
to include, in scientific notation (exponents), or to the right of the decimal point.

Valid values are any integer from 1 to 10.
Default is 5.

If you assign a floating decimal point, or if you specify less than 1 or more than
10 digits, HSPICE uses the default. For example, it places 5 digits to the right
of a decimal point.

MEASOUT

Outputs .MEASURE statement values and sweep parameters into an ASCII
file. Post-analysis processing (AvanWaves or other analysis tools) uses this
<design>.mt# file, where # increments for each .TEMP or .ALTER block.

For example, for a parameter sweep of an output load, which measures the
delay, the .mt# file contains data for a delay-versus-fanout plot. Default is 1.
You can set this option to 0 (off) in the hspice.ini file.

MENTOR = x

MENTOR = 2 enables the Mentor MSPICE-compatible (ASCII) interface.
Requires a specific license.

MONTECON

Continues a Monte Carlo analysis in HSPICE. Retrieves the next random
value, even if non-convergence occurs. A random value can be too large, or
too small, to cause convergence to fail. Other types of analysis can use this
Monte Carlo random value.

POST =x

Stores simulation results for analysis, using the AvanWaves graphical
interface or other methods.

» POST =1 (default) saves the results in binary format.
* POST = 2 saves the results in ASCII format.
e POST = 3 saves the results in New Wave binary format.

Set the POST option, and use the .PROBE statement to specify the data to
save. To use binary values (with double precision) in the output file, include the
following in the input file:

*kkkkkkkkkkkkkkkkkhkkhkkhkkhkhkkkkkhkkkhkkkhkkkkkhkkkkkkhkkhkk

.option post (or post=1) post_version=2001

kkkkkkkkkkkkkkhkkkkkhkkkkkkhkkkkhkkhkkkhkkkkkkkkkkkhkkhkkkkkkkkkkx

For more accurate simulation results, comment this format.

post_version
=2001

Sets the post-processing output version with a value of 2001. If you use this
option, a new output file header includes the right number of output variables,
rather than **** when the number exceeds 9999.

Simulation Options: General Control Options
8-11

Table 8-5

Interface Options (Sheet 3 of 3)

Parameter

Description

PROBE

Limits post-analysis output to only variables specified

in .PROBE, .PRINT, .PLOT, and .GRAPH statements. By default, HSPICE
outputs all voltages and power supply currents, in addition to variables listed
in .PROBE/.PRINT/.PLOT/.GRAPH statements. PROBE significantly
decreases the size of simulation output files.

PSF =X

Specifies whether HSPICE outputs binary or ASCII data, when you run an
HSPICE simulation from Cadence Analog Artist. Supported on Sun Solaris
2.5/2.7/2.8, HPUX 10.20 and 11.20, and IBM AIX 4.3 platforms only. Not
available on Linux platforms.

The value of x can be 1 or 2.

» Ifxis 2, HSPICE produces ASCII output.
» If . OPTION ARTIST PSF = 1, HSPICE produces binary output.

SDA

CDS = 2 produces a Cadence WSF (ASCII) format, post-analysis file, for
Opus. This option requires a specific license. SDA is the same as CDS.

ZUKEN =X

« |fxis 2, enables the Zuken interactive interface.
» If xis 1 (default), disables this interface.

Table 8-6

Analysis Options

Parameter

Description

FFTOUT

Prints 30 harmonic fundamentals, sorted by size, THD, SNR, and SFDR, but
only if you specify a .OPTION fftout statement and a .fft freq=xxx statement.

LIMPTS =x

Number of points to print or plot in AC analysis. You do not need to set LIMPTS
for DC or transient analysis. HSPICE spools the output file to disk.
Default=2001.

PARHIER

Selects parameter-passing rules that control the evaluation order of subcircuit
parameters. Applies only to parameters with the same name, at different levels
of subcircuit hierarchy.

LOCAL A parameter name in a subcircuit, prevails over the
same parameter name at a higher level of hierarchy.

GLOBAL A parameter name at a higher level of hierarchy.
Overrides the same parameter name at a lower level.

SEED

Starting seed for random-number generator in HSPICE Monte Carlo analysis.
The minimum value is 1; the maximum value is 259200.

Simulation Options: General Control Options

8-12

Table 8-6 Analysis Options (Continued)

Parameter | Description
ASPEC Sets HSPICE to ASPEC-compatibility mode. When you set this option, the
simulator reads ASPEC models and netlists, and the results are compatible.
Default is 0 (HSPICE mode).
If you set ASPEC, the following model parameters default to ASPEC values:
ACM = 1:
Changes the default values for CJ, IS, NSUB, TOX, U0, and
UTRA.
Diode Model:
TLEV = 1 affects temperature compensation for PB.
MOSFET Model:
TLEV = 1 affects PB, PHB, VTO, and PHI.
SCALM, SCALE:
Sets the model scale factor to microns, for length dimensions.
WL:
Reverses implicit order for stating width and length in a
MOSFET statement. Default (WL = 0) assigns the length
first, then the width.
SPICE Makes HSPICE compatible with Berkeley SPICE. If you set this option,

HSPICE uses these options and model parameters:
Example of general parameters, used with .OPTION SPICE:
TNOM = 27 DEFNRD =1 DEFNRS =1 INGOLD =2

ACOUT =0DC

PIVOT PIVTOL = |IE-13 PIVREL = 1E-3 RELTOL = 1E-3
ITL1 =100

ABSMOS = 1E-6 RELMOS = 1E-3 ABSTOL = 1E-12
VNTOL = 1E-6

ABSVDC = 1E-6 RELVDC = 1E-3 RELI = 1E-3

Example of transient parameters, used with .OPTION SPICE:

DCAP =1 RELQ = 1E-3 CHGTOL-1E-14 ITL3=41TL4 =10
ITL5 =5000 FS = 0.125 FT = 0.125

Example of model parameters, used with .OPTION SPICE:

For BJT: MJS =0

For MOSFET, CAPOP =0

LD = 0 if not user-specified

UTRA = 0 not used by SPICE for LEVEL =2
NSUB must be specified

NLEV = 0 for SPICE noise equation

Simulation Options: General Control Options

8-13

Error Options

You can use the following error options in HSPICE:

Table 8-7 Error Options

Parameter Description

BADCHR Generates a warning, when it finds a non-printable character in an input file.
DIAGNOSTIC Logs the occurrence of negative model conductances.

NOWARN Suppresses all warning messages, except those generated from statements

in .ALTER blocks.

WARNLIMIT = x

Limits how many times certain warnings appear in the output listing. This
reduces the output listing file size. x is the maximum number of warnings for
each warning type. This limit applies to these warning messages:

« MOSFET has negative conductance.

« Node conductance is zero.

e Saturation current is too small.

« Inductance or capacitance is too large.
Default is 1.

Version Options

You can use version options in HSPICE:

Table 8-8 Version Options

Version | Description

H9007 Sets default values for general-control options, to correspond to values for HSPICE
H9007D. If you set this option, HSPICE does not use the EXPLI model parameter.

Simulation Options: General Control Options

8-14

Model Analysis Options\

Table 8-9 General Options

Parameter Description

DCAP Selects equations, which HSPICE uses to calculate depletion capacitance
for Level 1 and 3 diodes, and BJTs. The HSPICE Elements and Device
Models Manual describes these equations.

MODSRH If MODSRH=1, HSPICE does not load or reference a model described in
a .MODEL statement, if the netlist does not use that model. This option
shortens simulation run time, when the netlist references many models, but
no element in the netlist calls those models. Default is MODSRH=0. If
MODSRH=1, then the read-in time increases slightly.

example.sp:

* modsrh used incorrectly

.option post modsrh=1

xil net8 b c t6

xi0 a b net8 t6

vl a0 pulse 3.3 0.0 10E-6 1E-9 1E-9
+ 25E-6 50E-6

v2bO02

v3c03

.model nch nmos level=49 version=3.2
.end

This input file automatically searches for t6.inc. If t6.inc includes the nch
model, and you set MODSRH to 1, HSPICE does not load nch. Do not set
MODSRH=1 in this type of file call. Use this option in front of the .MODEL
card definition.

SCALE Element scaling factor, in HSPICE. Scales parameters in element cards, by
their value. Default=1.

HIER_SCALE If you set the HIER_SCALE option, you can use the S parameter to scale
sub-circuits.

e Ointerprets S as a user-defined parameter.

e linterprets S as a scale parameter.

For more information about the S parameter, see S (Scale) Parameter on
page 3-59.

TNOM Reference temperature for HSPICE simulation. At this temperature,
component derating is zero. Default is 25 degrees Celsius; if you
enable .OPTION SPICE, Default is 27 degrees Celsius.

Simulation Options: Model Analysis Options\
8-15

Table 8-9 General Options (Continued)

Parameter Description

MODMONTE If MODMONTE=1, then within a single simulation run, each device that
shares the same model card and is in the same Monte Carlo index receives
a different random value for parameters that have a Monte Carlo definition.
If MODMONTE=0 (default), then within a single simulation run, each device
that shares the same model card and is in the same Monte Carlo index,
receives the same random value for its parameters that have a Monte Carlo
definition.

Table 8-10 MOSFET Control Options

Parameter | Description

CVTOL Changes the number of numerical integration steps, when calculating the
gate capacitor charge for a MOSFET, using CAPOP = 3. See the discussion
of CAPOP = 3 in the “Overview of MOSFETS” chapter of the HSPICE
Elements and Device Models Manual, for explicit equations and discussion.

DEFAD Default MOSFET drain diode area in HSPICE. Default=0.

DEFAS Default MOSFET source diode area in HSPICE. Default=0.

DEFL Default MOSFET channel length in HSPICE.

Default=1e™m.

DEFNRD Default number of squares for the drain resistor, on a MOSFET. Default is 0.

DEFNRS Default number of squares for the source resistor, on a MOSFET. Fault is 0.

DEFPD Default MOSFET drain diode perimeter, in HSPICE. Default is 0.

DEFPS Default MOSFET source diode perimeter, in HSPICE. Default is 0.

DEFW Default MOSFET channel width, in HSPICE.

Default=1e™m.

SCALM Model scaling factor, in HSPICE. Scales model parameters by their value.
Default is 1. See the HSPICE Elements and Device Models Manual, for
parameters this option scales.

WL Reverses the specified order, in the VSIZE MOS element. Default order is
length-width; changes the order to width-length. Default is O.

Simulation Options: Model Analysis Options\

8-16

\

Table 8-11 Inductor Options

Parameter | Description

GENK Automatically computes second-order mutual inductance, for several
coupled inductors. 1 (default) enables the calculation.

KLIM Minimum mutual inductance, below which automatic second-order mutual
inductance calculation no longer proceeds. KLIM is unitless (analogous to
coupling strength, specified in the K Element). Typical KLIM values are
between .5 and 0.0. Default is 0.01.

Table 8-12 BJT and Diode Options

Parameter | Description

EXPLI Current-explosion model parameter. PN junction characteristics, above the
explosion current, are linear. HSPICE determines the slope at the explosion
point. This improves simulation speed and convergence. Default is 0.0 amp/
AREAeff.

DC Operating Point, DC Sweep, and Pole/Zero Options

Table 8-13 Accuracy Options (Sheet 1 of 3)

Parameter Description

ABSH = x Sets the absolute current change, through voltage-defined branches (voltage
sources and inductors). Use ABSH with DI and RELH, to check for current
convergence. Default is 0.0.

ABSI = x Sets the absolute error tolerance for branch currents, in diodes, BJTs, and
JFETs, during DC and transient analysis. Decrease ABSI, if accuracy is more
important than convergence time.

To analyze currents less than 1 nanoamp, change ABSI to a value at least two
orders of magnitude smaller than the minimum expected current.
Default is 1e-9 for KCLTEST =0, or 1e-6 for KCLTEST = 1.

ABSTOL =x Sets the absolute error tolerance for branch currents, for DC and transient
analysis. Decrease ABSTOL, if accuracy is more important than convergence
time. ABSTOL is the same as ABSI.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options
8-17

Table 8-13 Accuracy Options (Sheet 2 of 3)

Parameter

Description

ABSMOS = x

Current error tolerance (for MOSFET devices), in DC or transient analysis. The
ABSMOS setting determines whether the drain-to-source current solution has
converged. The drain-to-source current converged if:

* The difference between the drain-to-source current in the last iteration,
versus the present iteration, is less than ABSMOS, or

» This difference is greater than ABSMOS, but the percent change is less
than RELMOS.

If other accuracy tolerances also indicate convergence, HSPICE solves the

circuit at that timepoint, and calculates the next timepoint solution. For low-

power circuits, optimization, and single transistor simulations, set

ABSMOS = 1e-12. Default is 1e-6 (amperes).

ABSVDC =X

Sets the minimum voltage, for DC and transient analysis. If accuracy is more
critical than convergence, decrease ABSVDC. If you need voltages less than
50 micro-volts, reduce ABSVDC, to two orders of magnitude less than the
smallest voltage. This ensures at least two digits of significance. Typically, you
do not need to change ABSVDC, unless you simulate a high-voltage circuit.
For 1000-volt circuits, a reasonable value is 5 to 50 millivolts. Default=VNTOL
(VNTOL default = 50 mV).

Sets the maximum iteration-to-iteration current change, through voltage-
defined branches (voltage sources and inductors). Use this option only if the
value of the ABSH control option is greater than 0. Default is 0.0.

KCLTEST

Activates KCL (Kirchhoff’'s Current Law) test. increases simulation time,
especially for large circuits, but very accurately checks the solution. Default=0.

If you set this value to 1, HSPICE sets these options:

» Sets RELMOS and ABSMOS options to 0 (off).

» Sets ABSI to 1e-6 A.

» Sets RELI to 1e-6.

To satisfy the KCL test, each node must satisfy this condition:

Yi.| <RELIZ|i,.| + ABSI
X1 i)

In this equation, the ibs are the node currents.

MAXAMP = x

Sets the maximum current, through voltage-defined branches (voltage sources
and inductors). If the current exceeds the MAXAMP value, HSPICE reports an
error. Default is 0.0.

RELH =x

Relative current tolerance, through voltage-defined branches (voltage sources
and inductors). Use RELH to check current convergence, but only if the value
of the ABSH control option is greater than zero. Default is 0.05.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options

8-18

Table 8-13 Accuracy Options (Sheet 3 of 3)

Parameter

Description

RELI = x

Sets the relative error/tolerance change, from iteration to iteration. This
parameter determines convergence for all currents, in diode, BJT, and JFET
devices. (RELMOS sets tolerance for MOSFETS). This is the change in current,
from the value calculated at the previous timepoint.

o Default = 0.01 for KCLTEST = 0.
o Default = 1e-6 for KCLTEST = 1.

RELMOS = x

Sets the relative error tolerance (percent) for drain-to-source current, from
iteration-to-iteration. This parameter determines convergence for currents in
MOSFET devices. (RELI sets the tolerance for other active devices.) Sets the
change in current, from the value calculated at the previous timepoint. HSPICE
uses the RELMOS value, only if the current is greater than the ABSMOS floor
value. Default is 0.05.

RELV =X

Sets the relative error tolerance for voltages. If voltage or current exceeds the
absolute tolerances, a RELV test determines convergence. Increasing RELV
increases the relative error. You should generally maintain RELV at its default
value. RELV conserves simulator charge. For voltages, RELV is the same as
RELTOL. Default is 1e-3.

RELVDC = x

Sets the relative error tolerance for voltages. If voltages or currents exceed
their absolute tolerances, the RELVDC test determines convergence.
Increasing RELVDC increases the relative error. You should generally maintain
RELVDC at its default value. RELVDC conserves simulator charge. Default is
RELTOL (RELTOL default = 1e-3).

Table 8-14 Matrix Options

Parameter

Description

ITLL =X

Maximum DC iteration limit. Increasing this value rarely improves convergence
in small circuits. Values as high as 400 have resulted in convergence for some
large circuits with feedback (such as operational amplifiers and sense
amplifiers). However, to converge, most models do not require more than 100
iterations. Set .OPTION ACCT to list how many iterations an operating point
requires. Default is 200.

ITL2 = x

Iteration limit for the DC transfer curve. Increasing this limit improves
convergence, only for very large circuits. Default is 50.

NOPIV

Prevents HSPICE from automatically switching to pivoting matrix factors, if a
nodal conductance is less than PIVTOL. NOPIV inhibits pivoting (see PIVOT).

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options
8-19

Table 8-14 Matrix Options (Continued)

Parameter Description
PIVOT = x Selects a pivot algorithms. Use these algorithms to reduce simulation time, and
to achieve convergence in circuits that produce hard-to-solve matrix equations.
To select the pivot algorithm, set PIVOT to one of these values:
0: Original non-pivoting algorithm.
1: Original pivoting algorithm.
2: Picks the largest pivot in the row.
3: Picks the best pivot in a row.
10 (default): Fast, non-pivoting algorithm; requires more memory.
11: Fast, pivoting algorithm; requires more memory than PIVOT values less
than 11.
12: Picks the largest pivot in the row; requires more memory than PIVOT
values less than 12.
13: Fast, best pivot: faster; requires more memory than PIVOT values less
than 13.
The fastest algorithm is PIVOT = 13, which can improve simulation time up to
ten times, on very large circuits. However, PIVOT = 13 requires substantially
more memory for simulation.
Some circuits with large conductance ratios, such as switching regulator
circuits, might require pivoting.
If PIVTOL = 0, HSPICE automatically changes from non-pivoting, to a row-pivot
strategy, if it detects any diagonal-matrix entry less than PIVTOL. This strategy
provides the time and memory advantages of non-pivoting inversion, and
avoids unstable simulations and incorrect results. Use .OPTION NOPIV, to
prevent HSPICE from pivoting. For very large circuits, PIVOT = 10, 11, 12, or
13, can require excessive memory.
If HSPICE switches to pivoting during a simulation, it prints the message:
pivot change on the fly
followed by the node numbers that cause the problem. Use
.OPTION NODE to cross-reference a node to an element.
SPARSE is the same as PIVOT.
PIVREF Pivot reference. Use PIVREF in PIVOT = 11, 12, or 13, to limit the size of the
matrix. Default is 1e+8.
PIVREL = x Sets the maximum and minimum ratio of a row or matrix. Use only if PIVOT = 1.

Large values for PIVREL can result in very long matrix pivot times. If the value
is too small, however, no pivoting occurs. Start with small values of PIVREL,
using an adequate (but not excessive) value, for convergence and accuracy.
Default is 1E-20 (max = 1e-20, min = 1).

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options

8-20

Table 8-14 Matrix Options (Continued)

Parameter Description

PIVTOL = x Absolute minimum value for which HSPICE accepts a matrix entry as a pivot. If
PIVOT=0, PIVTOL is the minimum conductance in the matrix. Default=1.0e-15.
PIVTOL must be less than GMIN or GMINDC. Values that approach 1 increase
the pivot.

SPARSE =x | SPARSE is the same as PIVOT.

Table 8-15 Pole/Zero I/O Options

Parameter Description

CAPTAB Prints table of single-plate node capacitances, for diodes, BJTs, MOSFETSs,
JFETs, and passive capacitors, at each operating point.

DCCAP Generates C-V plots. Prints capacitance values of a circuit (both model and
element), during a DC analysis. You can use a DC sweep of the capacitor, to
generate C-V plots. Default = 0 (off).

VFLOOR =X Minimum voltage to print in output listing. All voltages lower than VFLOOR,
print as 0. Affects only the output listing: VNTOL (ABSV) sets minimum
voltage to use in a simulation.

Table 8-16 Convergence Options (Sheet 1 of 4)

Parameter Description
CONVERGE Invokes different methods to solve non-convergence problems.
or DCTRAN CONVERGE =-1

Use with DCON = -1, to disable autoconvergence.
CONVERGE =0

Autoconvergence (default).

CONVERGE =1

Uses the Damped Pseudo Transient algorithm. If simulation does not converge
within the set CPU time (in the CPTIME control option), then simulation halts.

CONVERGE =2

Uses a combination of DCSTEP and GMINDC ramping. Not used in the
autoconvergence flow.

CONVERGE = 3
Invokes the source-stepping method. Not used in the autoconvergence flow.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options
8-21

Table 8-16

Convergence Options (Sheet 2 of 4)

Parameter

Description

CONVERGE =4
Uses the gmath ramping method.

Even you did not set it in an .OPTION statement, the CONVERGE option
activates if a matrix floating-point overflows, or if HSPICE reports a timestep too
small error. Default = 0.

If a matrix floating-point overflows, then CONVERGE = 1.

CSHDC

The same option as CSHUNT; use only with the CONVERGE option.

DCFOR = x

Use with DCHOLD and the .NODESET statement, to enhance DC
convergence.

DCFOR sets the number of iterations to calculate, after a circuit converges in
the steady state. The number of iterations after convergence is usually zero, so
DCFOR adds iterations (and computation time) to the DC circuit solution.
DCFOR ensures that a circuit actually, not falsely, converges. Default is 0.

DCHOLD = x

Use DCFOR and DCHOLD together, to initialize DC analysis. DCFOR and
DCHOLD enhance the convergence properties of a DC simulation. DCFOR and
DCHOLD work with the .NODESET statement. Default is 1.

DCHOLD specifies how many iterations to hold a node, at the .NODESET
voltage values. The effects of DCHOLD on convergence differ, according to the
DCHOLD value, and the number of iterations before DC convergence.

If a circuit converges in the steady state, in fewer than DCHOLD iterations, the
DC solution includes the values set in NODESET.

If a circuit requires more than DCHOLD iterations to converge, HSPICE ignores
the values set in the .NODESET statement, and calculates the DC solution,
using the .NODESET fixed-source voltages open circuited.

DCSTEP = x

Converts DC model and element capacitors to a conductance, to enhance DC
convergence properties. HSPICE divides the value of the element capacitors by
DCSTEP, to model DC conductance. Default is 0 (seconds).

DCON =X

If a circuit cannot converge, HSPICE automatically sets DCON =1, and
calculates the following:

v
DV = max%).l, MaX] it pv = 1000

50 U’
|
_ max _
GRAMP = max$, log]-OEGD__——EDMINDCD] ITLL = ITLL + 20 (GRAMP

Vnax IS the maximum voltage, and I, 5 is the maximum current.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options

8-22

Table 8-16

Convergence Options (Sheet 3 of 4)

Parameter

Description

 If the circuit still cannot converge, HSPICE sets DCON = 2, which sets
DV = 1e6.

 If the circuit uses discontinuous models or uninitialized flip-flops, simulation
might not converge. Set DCON = -1 and CONVERGE = -1, to disable
autoconvergence. HSPICE lists all non-convergent nodes and devices.

DCTRAN

Invokes different methods to solve non-convergence problems. DCTRAN is an
alias for CONVERGE.

DV = x

Maximum iteration-to-iteration voltage change, for all circuit nodes, in both DC
and transient analysis. High-gain bipolar amplifiers can require values of 0.5 to
5.0, to achieve a stable DC operating point. Large CMOS digital circuits
frequently require about 1 volt. Default is 1000 (or 1e6 if DCON = 2).

GMAX =X

Conductance, in parallel with a current source, for .IC and
.NODESET initialization circuitry. Some large bipolar circuits require you to set
GMAX=1, for convergence. Default=100 (mho).

GMINDC = x

Conductance in parallel to all pn junctions and MOSFET nodes except gate
(see Figure 4-2 on page 4-42), for DC analysis. GMINDC helps overcome DC
convergence problems, caused by low values of off-conductance, for pn
junctions and MOSFETs. You can use GRAMP to reduce GMINDC, by one
order of magnitude, for each step. Set GMINDC between 1le-4 and the PIVTOL
value. Default is 1e-12.

Large values of GMINDC can cause unreasonable circuit response. If your
circuit requires large values to converge, suspect a bad model or circuit. If a
matrix floating-point overflows, and if GMINDC is 1.0e-12 or less, HSPICE sets
it to 1.0e-11. HSPICE manipulates GMINDC in auto-converge mode (see
Autoconverge Process on page 9-31).

GSHUNT

Conductance, added from each node to ground. Default is zero. Add a small
GSHUNT to each node, to help solve Timestep too small problems, caused by
either high-frequency oscillations or numerical noise.

GRAMP = x

HSPICE sets this value during auto-convergence (default=0). Use GRAMP, with
the GMINDC option, to find the smallest GMINDC value that results in DC
convergence. For a description of GMINDC, see on page 9-28.

GRAMP specifies a conductance range, over which DC operating point analysis
sweeps GMINDC. HSPICE replaces GMINDC values over this range, simulates
each value, and uses the lowest GMINDC value where the circuit converges in
a steady state.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options
8-23

Table 8-16 Convergence Options (Sheet 4 of 4)

Parameter

Description

If you sweep GMINDC between 1le-12 mhos (default) and 1e-6 mhos, GRAMP
is 6 (value of the exponent difference, between the default and the maximum
conductance limit). In this example:

« HSPICE first sets GMINDC to 1e-6 mhos, and simulates the circuit.

« If circuit simulation converges, HSPICE sets GMINDC to 1e-7 mhos, and
simulates the circuit.

» The sweep continues until HSPICE simulates all values of the GRAMP ramp.

e If the combined GMINDC and GRAMP conductance is greater than 1le-3
mho, false convergence can occur.

ICSWEEP

Saves the current analysis result of a parameter or temperature sweep, as the
starting point in the next analysis in the sweep.

« If ICSWEEP =1 (default), the next analysis uses the current results.
« If ICSWEEP = 0, the next analysis does not use the results of the current
analysis.

ITLPTRAN

Controls the iteration limit used in the final try of the pseudo-transient method,
in OP or DC analysis. If simulation fails in the final try of the pseudo-transient
method, enlarge this option. Default is 30.

NEWTOL

Calculates one or more iterations past convergence, for every calculated DC
solution and timepoint circuit solution. If you do not set NEWTOL, after HSPICE
determines convergence, the convergence routine ends, and the next program
step begins. Default is 0.

OFF

For all active devices, initializes terminal voltages to zero, if you did not initialize
them to other values. For example, if you did not initialize both drain and source
nodes of a transistor (using .NODESET or .IC statements, or connecting them
to sources), then OFF initializes all nodes of the transistor to zero.

HSPICE checks the OFF option, before element IC parameters. If you assigned
an element IC parameter to a node, simulation initializes the node to the
element IC parameter value, even if the OFF option previously set it o zero.

You can use the OFF element parameter to initialize terminal voltages to zero,
for specific active devices. Use the OFF option to help find exact DC operating
point solutions, for large circuits.

RESMIN = x

Minimum resistance for all resistors, including parasitic and inductive
resistances. Default is 1e-5 (ohm). Range: 1le-15 to 10 ohm.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options

8-24

Table 8-17 Pole/Zero Control Options

Parameter | Description

CSCAL Sets the capacitance scale. HSPICE multiplies capacitances by CSCAL. Default
is le+12 (capacitances in pF).

FMAX Maximum frequency of angular velocity for poles/zeros. Default=1.0e+12 rad/sec.

FSCAL Sets the frequency scale. HSPICE multiplies the frequency by FSCAL. Default is
1.0e-9 (that is, all frequencies are in units of GHz).

GSCAL Sets the conductance scale. HSPICE multiplies conductances, and divides
resistances, by GSCAL. Default is 1e+3 (that is, by default, you enter all
resistances in units of kQ).

ITLPZ Sets the iteration limit for pole/zero analysis. Default = 100.

LSCAL Sets the inductance scale. HSPICE multiplies inductances by LSCAL. Default is
le+6 (that is, all inductances are in units of mH).

Scale factors must satisfy the following relations:
- _ 1
GSCAL = CSCAL[FSCAL GSCAL = TSCAL [FSCAL
If you change scale factors, modify initial Muller points (XOR, X0I), (X1R, X1lI), and
(X2R, X2I). HSPICE multiplies initial values by (1.0e-9/GSCAL).

PZABS Absolute tolerances, for poles and zeros. Affects only low-frequency poles or
zeros. Use it as follows:

If (’Xreal‘ +‘Ximag‘ <PZABS), then Xieal = 0 and Ximag =0.
You can also use this option for convergence tests. Default is 1.0e-2.

PZTOL Relative error tolerance, for poles or zeros. Default=1.0e-6.

RITOL Minimum ratio for (real/imaginary), or (imaginary/real) parts of poles or
zeros.Default is 1.0e-6.

If ‘Ximag’ <RITOL qxreaI’ , then Ximag = 0.
If ‘xreaI’ <RITOL qximag’ , then xreal = 0.

(XOR,X0I), Three complex starting points, in the Muller pole/zero analysis algorithm, are:

(X1R,X1l), XOR = -1.23456€6 X0l = 0.0

(X2R,X21) X1R =-1.23456e5 X1I1=0.0

X2R = +.23456e6 X2 =0.0
HSPICE multiplies these initial points, and FMAX, by FSCAL.

Simulation Options: DC Operating Point, DC Sweep, and Pole/Zero Options
8-25

Transient and AC Small Signal Analysis Options

Table 8-18 Accuracy Options (Sheet 1 of 3)

Parameter Description

ABSH = x Absolute current change, through voltage-defined branches (voltage sources
and inductors). Use ABSH with DI and RELH to check for current convergence.
Default is 0.0.

ABSV =x Sets absolute minimum voltage for DC and transient analysis. ABSV is the
same as VNTOL. If accuracy is more critical than convergence, decrease
VNTOL. If you need voltages less than 50 microvolts, reduce VNTOL to two
orders of magnitude less than the smallest desired voltage. This ensures at
least two significant digits. Typically, you do not need to change VNTOL, except
to simulate a high-voltage circuit. A reasonable value for 1000-volt circuits is 5
to 50 millivolts. Default is 50 (microvolts).

ACCURATE Selects a time algorithm that uses LVLTIM = 3 and DVDT = 2, for circuits such
as high-gain comparators. Use this option with circuits that combine high gain
and large dynamic range, to guarantee accurate solutions in HSPICE. When set
to 1, ACCURATE sets these control options:

« LVLTIM=3

« DVDT =2

* RELVAR =0.2

« ABSVAR=0.2

« FT=0.2

« RELMOS =0.01
Default is 0.

ACOUT AC output calculation method, for the difference in values of magnitude, phase,
and decibels. Use this option for prints and plots. Default is 1.

Default value, ACOUT = 1, selects HSPICE method, which calculates the
difference of the magnitudes of the values.
SPICE method, ACOUT = 0, calculates the magnitude of the differences.

CHGTOL =x | Sets a charge error tolerance, if you set LVLTIM = 2. Use CHGTOL with RELQ
to set the absolute and relative charge tolerance for all HSPICE capacitances.
Default=1e-15 (coulomb).

CSHUNT Capacitance added from each node to ground, in HSPICE. Add a small
CSHUNT to each node, to solve internal timestep too small problems, caused
by high-frequency oscillations or numerical noise. Default=0.

GMIN = x Minimum conductance added to all PN junctions, for a time sweep in transient

analysis. Default is 1e-12.

Simulation Options: Transient and AC Small Signal Analysis Options

8-26

Table 8-18 Accuracy Options (Sheet 2 of 3)

Parameter

Description

DI =x

Maximum iteration-to-iteration current change, through voltage-defined
branches (voltage sources and inductors). Use this option only if the value of
the ABSH control option is greater than 0. Default is 0.0.

GSHUNT

Conductance, added from each node to ground. Default is zero. Add a small
GSHUNT to each node, to help solve some internal timestep too small
problems, caused by high-frequency oscillations or numerical noise.

MAXAMP = x

Maximum current, through voltage-defined branches (voltage sources and
inductors). If the current exceeds the MAXAMP value, HSPICE issues an error.
Default is 0.0.

RELH =x

Relative current tolerance, through voltage-defined branches (voltage sources
and inductors). Use RELH to check current convergence, but only if the value
of the ABSH control option is greater than zero. Default is 0.05.

RELI = x

Relative error/tolerance change, from iteration to iteration. This parameter
determines convergence for all currents, in diode, BJT, and JFET devices.
(RELMOS sets tolerance for MOSFETS). This is the change in current, from the
value calculated at the previous timepoint.

+ Default = 0.01 for KCLTEST = 0.
» Default = 1e-6 for KCLTEST = 1.

RELQ = x

Used in the timestep algorithm for local truncation error (LVLTIM = 2). RELQ
changes the timestep size. If the capacitor charge calculation (in the present
iteration) exceeds that of the past iteration by a percentage greater than the
RELQ value, then HSPICE reduces the internal timestep (Delta). Default=0.01.

RELTOL,
RELV

Relative error tolerance for voltages. Use RELV, with the ABSV control option,
to determine voltage convergence. Increasing RELV increases the relative
error. RELV is the same as RELTOL. RELI and RELVDC options default to the
RELTOL value. Default is 1e-3.

RISETIME

Smallest risetime of a signal, .OPTION RISETIME=x. Use it only in
transmission line models, in HSPICE. In the U Element, this equation
determines the number of lumps:

TDeff [}
MIN[20, 1+ ERD—ISETIMED 20

TDeff is the end-to-end delay in a transmission line. The W Element uses
RISETIME, only if Rs or Gd is non-zero. In such cases, RISETIME determines
the maximum signal frequency.

Simulation Options: Transient and AC Small Signal Analysis Options
8-27

Table 8-18 Accuracy Options (Sheet 3 of 3)

Parameter

Description

TRTOL = x

Used in the timestep algorithm for local truncation error (LVLTIM = 2). HSPICE
multiplies TRTOL by the internal timestep, which the timestep algorithm for the
local truncation error generates. TRTOL reduces simulation time, and maintains
accuracy. It estimates the amount of error introduced, when the algorithm
truncates the Taylor series expansion. This error reflects the minimum time-
step, to reduce simulation time and maintain accuracy. The range of TRTOL is
0.01 to 100; typical values are 1 to 10. If you set TRTOL to 1 (the minimum
value), HSPICE uses a very small timestep. As you increase the TRTOL setting,
the timestep size increases. Default is 7.0.

VNTOL = x,
ABSV

Absolute minimum voltage, for DC and transient analysis. ABSV is the same as
VNTOL. Decrease VNTOL, if accuracy is more critical than convergence. If you
need voltages less than 50 microvolts, reduce VNTOL to two orders of
maghnitude less than the smallest desired voltage. This ensures at least two
significant digits. Typically, you change VNTOL only if you simulate a high-
voltage circuit. For 1000-volt circuits, a reasonable value is 5 to 50 millivolts.
Default is 50 (microvolts).

Table 8-19

Speed Options (Sheet 1 of 3)

Parameter

Description

AUTOSTOP

Stops a transient analysis in HSPICE, after calculating all TRIG-TARG and
FIND-WHEN measure functions. This option can substantially reduce CPU
time. By default, if the data file contains measure functions (such as AVG,
RMS, MIN, MAX, PP, ERR, ERR1,2,3, or PARAM), then AUTOSTORP is
disabled (thatis, .OPTION autostop or .OPTION autostop from_to=0 is set). To
use AUTOSTOP with these measure functions, set .OPTION autostop from_to
or .OPTION autostsop from_to=1.

For trig-targ and find-when measure functions, if you set autostop, do not use
the preceding measure result as the measured parameter. Otherwise, the
measured result is probably inaccurate.

BKPSIZ = x

Sets the size of the breakpoint table. Default is 5000. This is an old option,
provided only for backward-compatibility.

BYPASS

Bypasses model evaluations, if the terminal voltages do not change. Can be 0
(off) or 1 (on). To speed-up simulation, this option does not update the status
of latent devices. To enable bypassing, set .OPTION BYPASS = 1, for
MOSFETs, MESFETs, JFETs, BJTs, or diodes. Default = 1.

Use the BYPASS algorithm cautiously. Some circuit types might not converge,
and might lose accuracy in transient analysis and operating-point calculations.

Simulation Options: Transient and AC Small Signal Analysis Options

8-28

Table 8-19 Speed Options (Sheet 2 of 3)

Parameter Description

BYTOL = x Specifies a voltage tolerance, at which a MOSFET, MESFET, JFET, BJT, or
diode becomes latent. HSPICE does not update status of latent devices.
Default = MBYPASS x VNTOL.

FAST To speed-up simulation, this option does not update the status of latent
devices. Use this option for MOSFETs, MESFETSs, JFETs, BJTs, and diodes.
Default is 0.

A device is latent, if its node voltage variation (from one iteration to the next) is
less than the value of either the BYTOL control option, or the BYPASSTOL
element parameter. (If FAST is on, HSPICE sets BYTOL to different values, for
different types of device models.)

Besides the FAST option, you can also use the NOTOP and NOELCK options,
to reduce input pre-processing time. Increasing the value of the MBYPASS or
BYTOL option, also helps simulations to run faster, but can reduce accuracy.

ITLPZ Sets the iteration limit for pole/zero analysis. Default is 100.

MBYPASS = x Computes the default value of the BYTOL control option:

BYTOL = MBYPASSxVNTOL
Also multiplies the RELV voltage tolerance. Set MBYPASS to about 0.1, for
precision analog circuits.

« Defaultis 1, for DVDT =0, 1, 2, or 3.
« Defaultis 2, for DVDT = 4.

TRCON Controls the speed of some special circuits. For some large non-linear circuits
with large TSTOP/TSTEP values, analysis might run for an excessively long
time. In this case, HSPICE might automatically set a new and bigger RMAX
value, to speed up the analysis for primary reference. In most cases, however,
HSPICE does not activate this type of autospeedup process.

For autospeedup to occur, all three of the following conditions must occur:

e N1 (Number of Nodes) > 1,000

* N2 (TSTOP/TSTEP) >= 10,000

* N3 (Total Number of Diode, BJTs, JFETs and MOSFETSs) > 300
Autospeedup is most likely to occur if the circuit also meets either of the
following conditions:

e N2 >=1e+8, and N3 > 500, or
e N2 >=2e+5, and N3 > le+4

Simulation Options: Transient and AC Small Signal Analysis Options
8-29

Table 8-19 Speed Options (Sheet 3 of 3)

Parameter

Description

If HSPICE does activate autospeedup, you might need to disable it. To do this,
set TRCON=-1, and increase TSTEP or RMAX (or both), to balance accuracy
and speed.

» TRCON = 0 or TRCON=1 enables autospeedup for circuits that meet
necessary conditions.

e TRCON = -1 disables autospeedup.

The default value of TRCON is 1.

TRCON also controls the automatic convergence process. See on page 8-32.

Table 8-20 Timestep Options (Sheet 1 of 3)

Parameter Description

ABSVAR = x Sets the absolute limit for the maximum voltage change, from one time point
to the next. Use this option with the DVDT algorithm. If the simulator produces
a convergent solution that is greater than ABSVAR, then HSPICE discards the
solution, sets the timestep to a smaller value, and recalculates the solution.
This is called a timestep reversal. Default=0.5 (volts).

DELMAX =X Sets the maximum Delta of the internal timestep. HSPICE automatically sets
the DELMAX value, based on the factors listed in Timestep Control for
Accuracy on page 10-25. The initial DELMAX value, shown in the HSPICE
output listing, is generally not the value used for simulation.

DVDT Adjusts the timestep, based on rates of change for node voltage. Default is 4.
e 0 - original algorithm
e 1-fast
e 2 -accurate
3,4 - balance speed and accuracy

FS=x Decreases Delta (internal timestep) by the specified fraction of a timestep
(TSTEP), for the first time point of a transient. Decrease the FS value to help
circuits that have timestep convergence difficulties. DVDT = 3 uses FS to
control the timestep.
Delta = FS x[MIN(TSTEP, DELMAX, BKPT)]
* You specify DELMAX.
« BKPT is related to the breakpoint of the source.
» The .TRAN statement sets TSTEP. Default = 0.25.

Simulation Options: Transient and AC Small Signal Analysis Options

8-30

Table 8-20 Timestep Options (Sheet 2 of 3)

Parameter

Description

FT =x

Decreases Delta (the internal timestep), by a specified fraction of a timestep
(TSTEP), for an iteration set that does not converge. If DVDT = 2 or
DVDT = 4, FT controls the timestep. Default = 0.25.

IMIN = X,
ITL3 =X

Minimum timestep, in timestep algorithms for transient analysis. IMIN is the
minimum number of iterations required, to obtain convergence. If the number
of iterations is less than IMIN, the internal timestep (Delta) doubles.

Use this option to decrease simulation times, in circuits where the nodes are
stable most of the time (such as digital circuits). If the number of iterations is
greater than IMIN, the timestep stays the same, unless the timestep exceeds
the IMAX option. ITL3 is the same as IMIN. Default is 3.0.

IMAX = X,
ITL4 =X

Maximum timestep, in timestep algorithms for transient analysis. IMAX sets
the maximum iterations, to obtain a convergent solution at a timepoint. If the
number of iterations needed is greater than IMAX, the internal timestep (Delta)
decreases, by a factor equal to the FT transient control option. HSPICE uses
the new timestep to calculate a new solution. IMAX also works with the IMIN
transient control option. ITL4 is the same as IMAX. Default is 8.0.

ITL3 =X

ITL3 is the same as IMIN. Default is 3.0.

ITL4 =X

ITL4 is the same as IMAX. Default is 8.0.

ITLS =X

Sets an iteration limit for transient analysis. If a circuit uses more than ITL5
iterations, the program prints all results, up to that point. The default (0.0)
allows an infinite number of iterations.

RELVAR = x

Use this option with ABSVAR, and the DVDT timestep algorithm. RELVAR
sets the relative voltage change, for LVLTIM = 1 or 3. If the node voltage at the
current time point exceeds the node voltage at the previous time point by
RELVAR, then HSPICE reduces the timestep, and calculates a new solution
at a new time point. Default is 0.30 (30%).

RMAX =X

Sets the TSTEP multiplier, which controls the maximum value (DELMAX) for
the Delta of the internal timestep:

DELMAX = TSTEP x RMAX

¢ Default =5, if dvdt = 4 and Ivitim = 1.

¢ Otherwise, the default = 2.

The maximum value is 1e+9, the minimum value is 1e-9. The recommended
maximum value is le+5.

Simulation Options: Transient and AC Small Signal Analysis Options
8-31

Table 8-20 Timestep Options (Sheet 3 of 3)

Parameter

Description

RMIN = x

Sets the minimum value of Delta (internal timestep). An internal timestep
smaller than RMINXTSTEP, terminates the transient analysis, and reports an
internal timestep too small error. If the circuit does not converge in IMAX
iterations, Delta decreases by the amount you set in the FT option.

Default = 1.0e-9.

SLOPETOL = x

Minimum value, for breakpoint table entries in a piecewise linear (PWL)
analysis. If the difference in the slopes of two consecutive PWL segments is
less than the SLOPETOL value, HSPICE ignores the breakpoint, for the point
between the segments. Default is 0.5.

TIMERES = x

Minimum separation between breakpoint values, for the breakpoint table. If
two breakpoints are closer together (in time) than the TIMERES value,
HSPICE enters only one of them in the breakpoint table. Default is 1 ps.

Table 8-21 Algorithm Options (Sheet 1 of 3)

Option

Description

DVTR

Limits voltage in transient analysis. Default is 1000.

IMAX = X,
ITL4 =X

Maximum timestep, in timestep algorithms for transient analysis. IMAX sets the
maximum iterations, to obtain a convergent solution at a timepoint. If the
number of iterations needed is greater than IMAX, the internal timestep (Delta)
decreases, by a factor equal to the FT transient control option. HSPICE uses
the new timestep to calculate a new solution. IMAX also works with the IMIN
transient control option. ITL4 is the same as IMAX. Default is 8.0.

IMIN = X,
ITL3 =X

Minimum timestep, in timestep algorithms for transient analysis. IMIN is the
minimum number of iterations required, to obtain convergence. If the number
of iterations is less than IMIN, the internal timestep (Delta) doubles. Use this
option to decrease simulation times, in circuits where the nodes are stable
most of the time (such as digital circuits). If the number of iterations is greater
than IMIN, the timestep stays the same, unless the timestep exceeds the IMAX
option. ITL3 is the same as IMIN. Default is 3.0.

LVLTIM = x

Selects the timestep algorithm, for transient analysis.

e LVLTIM = 1 (default) uses the DVDT timestep algorithm.
e LVLTIM = 2 uses the timestep algorithm for local truncation error.
e LVLTIM = 3 uses the DVDT timestep algorithm with timestep reversal.

Simulation Options:
8-32

Transient and AC Small Signal Analysis Options

Table 8-21 Algorithm Options (Sheet 2 of 3)

Option

Description

» To use the GEAR method of numerical integration and linearization, select
LVLTIM = 2.

» To use the TRAP linearization algorithm, select LVLTIM = 1 or 3. Using
LVLTIM = 1 (DVDT option) is the default, and helps avoid internal timestep
too small non-convergence.

The local truncation algorithm (LVLTIM = 2) provides a higher degree of

accuracy than the TRAP method. If you use this option, errors do not propagate

from time point to time point, which can result in an unstable solution.

MAXORD = x

Maximum order of integration, for the GEAR method in HSPICE (see
METHOD). The x value can be either 1 or 2.

« MAXORD = 1 uses the backward Euler integration method.
« MAXORD = 2 (default) is more stable, accurate, and practical.

METHOD =
name

Sets the numerical integration method, for a transient analysis, to either GEAR
or TRAP.

* To use GEAR, set METHOD = GEAR, which sets LVLTIM = 2.

e To change LVLTIM from 2to 1 or 3, set LVLTIM = 1 or 3, after the
METHOD = GEAR option. This overrides METHOD=GEAR, which sets
LVLTIM = 2.

TRAP (trapezoidal) integration usually reduces program execution time, with

more accurate results. However, this method can introduce an apparent

oscillation on printed or plotted nodes, which might not result from circuit
behavior. To test this, run a transient analysis, using a small timestep. If
oscillation disappears, the cause was the trapezoidal method.

The GEAR method is a filter, removing oscillations that occur in the trapezoidal
method. Highly non-linear circuits (such as operational amplifiers) can require
very long execution times, when you use the GEAR method.

Circuits that do not converge in trapezoidal integration, often converge if you
use GEAR. Default is TRAP (trapezoidal).

PURETP

Integration method to use, for reversal time point. Default is 0. If you set
puretp=1, then if HSPICE finds non-convergence, it uses TRAP (instead of
B.E) for the reversed time point. Use this option, with the method=TRAP
statement, to help some oscillating circuits to oscillate, if the default simulation
process cannot satisfy the result.

MU = x

Coefficient for trapezoidal integration. Range is 0.0 to 0.5. Default is 0.5.

Simulation Options: Transient and AC Small Signal Analysis Options
8-33

Table 8-21 Algorithm Options (Sheet 3 of 3)

Option

Description

TRCON

Controls the automatic convergence (autoconvergence) and automatic
speedup (autospeedup) processes in HSPICE. HSPICE also uses
autoconvergence in DC analysis, if the Newton-Raphson (N-R) method fails to
converge.

« TRCON-=1 (the default) enables both autoconvergence and autospeedup.
» TRCON= 0 enables autospeedup only.

« TRCON =-1 disables both autoconvergence and autospeedup.

If the circuit fails to converge using the trapezoidal (TRAP) numerical
integration method (for example, because of trapezoidal oscillation), HSPICE
uses the GEAR method and LTE timestep algorithm, to run the transient
analysis again from time=0. This process is called autoconvergence.

Autoconvergence sets options to their default values before the second try:

* METHOD=GEAR, LVLTIM=2, MBYPASS=1.0, BYPASS=0.0,
SLOPETOL=0.5, BYTOL= min{mbypas*vntol and reltol}
« RMAX=2.0 if it was 5.0 in the first run. Otherwise RMAX does not change.

Input and Output Options

You can use the following input and output options in HSPICE:

Table 8-22

Input/Output Options

Parameter

Description

INTERP

Limits output for post-analysis tools, such as Cadence or Zuken, to only
the .TRAN timestep intervals. By default, HSPICE outputs all convergent
iterations. INTERP typically produces a much smaller design.tr# file.

If the netlist includes .MEASURE statements, use INTERP = 1 cautiously.
To compute measure statements, HSPICE uses the postprocessing output.
Reduced postprocessing output can incorrectly interpolate measure results.

If you run data-driven transient analysis (.TRAN DATA statement) within
optimization, HSPICE forces INTERP to 1. All measurement results are at
time points set in the data-driven sweep. To measure only at converged
internal timesteps (such as to calculate AVG or RMS), set ITRPRT = 1.

ITRPRT

Prints output variables, at their internal time points. This option might
generate a long output list. Use the ITRPRT option if you use .PRINT
statements that include functions such as ABS, AVG, RMS, INT, NINT, and
S0 on, to avoid interpolation errors.

Simulation Options: Transient and AC Small Signal Analysis Options

8-34

Table 8-22

Input/Output Options (Continued)

Parameter

Description

MEASFAIL

» If measfail=0, outputs 0 into the .mt#, .ms#, or .ma# file, and prints failed
to the listing file.

« If measfail=1 (default), prints failed into the .mt#, .ms#, or .ma# file, and
into the listing file: .option measfail=1 | 0

MEASSORT

To automatically sort large numbers of MEASURE statements, use
the .OPTION MEASSORT statement.

e .OPTION MEASSORT=0 (default; do not sort MEASURE statements).
e .OPTION MEASSORT=1 (internally sort . MEASURE statements).

Set this option to 1 only if you use a large number of MEASURE
statements, where you need to list similar variables together (to reduce
simulation time). For a small number of MEASURE statements, turning on
internal sorting can slow-down simulation while sorting, compared to not
sorting first.

PUTMEAS

Controls the output variables, listed in the .MEASURE statement.
.option putmeas=0 or (1)

Does not save variable values, which are listed in the .MEASURE
statement, into the corresponding output file (such as .tr#, .ac# or .sw#).
This option decreases the size of the output file.

Default. Saves variable values, which are listed in the . MEASURE
statement, into the corresponding output file (such as .tr#, .ac# or .sw#).
This option is similar to the output of Hspice 2000.4.

UNWRAP

Displays phase results from AC analysis, in unwrapped form (with a
continuous phase plot). HSPICE uses these results to accurately calculate
group delay. It also uses unwrapped phase results to compute group delay,
even if you do not set the UNWRAP option.

Simulation Options: Transient and AC Small Signal Analysis Options
8-35

Simulation Options: Transient and AC Small Signal Analysis Options
8-36

Initializing DC/Operating Point Analysis

This chapter describes DC initialization and operating point analysis.
It explains the following topics:

Simulation Flow

* Initialization and Analysis

« DC Initialization and Operating Point Statements
« .DC Statement—DC Sweeps

 Other DC Analysis Statements

 DC Initialization Control Options

 Accuracy and Convergence

 Reducing DC Errors

« Diagnosing Convergence Problems

9-1

Simulation Flow

Figure 9-1 shows the simulation flow, for DC analysis in Synopsys

HSPICE.
Figure 9-1 DC Initialization and Operating Point Analysis Simulation Flow
Simulation Experiment
DC Transient AC
Op. point Sweep analysis DC-related AC Monte Carlo
simulation small-signal analysis analysis
(HSPICE only)
SENS
TF
PZ
Options: | Tolerance Matrix Convergence Limit
ABSI (ABSTOL) ITL1 GMAX RESMIN
ABSMOS NOPIV CONVERGE GMINDC
ABSV PIVOT CSHDC GRAMP
ABSVDC PIVREF DCFOR GSHUNT
KCLTEST PIVREL DCHOLD | ~q\wEEP
RELI PIVTOL DCON . NEwTOL
RELMOS SPARSE DGTRAN OFF
RELV NOTOP DV
RELVDC

Initializing DC/Operating Point Analysis: Simulation Flow
9-2

Initialization and Analysis

Before it performs .OP, .DC sweep, .AC, or .TRAN analyses,
HSPICE first sets the DC operating point values, for all nodes and
sources. To do this, HSPICE does one of the following:

« Calculates all values
» Applies values specified in . NoDESET and . | ¢ statements
» Applies values stored in an initial conditions file.

The .OPTION OFF statement, and the OFF and IC = val element
parameters, also control initialization.

Initialization is fundamental to simulation. HSPICE starts any
analysis with known nodal voltages (or initial estimates for unknown
voltages), and some branch currents. It then iteratively finds the
exact solution. Initial estimates that are close to the exact solution,
increase the likelihood of a convergent solution and a lower
simulation time.

A transient analysis first calculates a DC operating point, using the
DC equivalent model of the circuit (unless you specify the UIC
parameter in the . TRAN statement). HSPICE then uses the resulting
DC operating point as an initial estimate, to solve the next timepoint
in the transient analysis.

1. If you do not provide an initial guess, or if you provide only partial
information, HSPICE provides a default estimate, for each node
in the circuit.

2. HSPICE then uses this estimate to iteratively find the exact
solution.

The .NODESET and .IC statements supply an initial guess, for
the exact DC solution of nodes within a circuit.

Initializing DC/Operating Point Analysis: Initialization and Analysis
9-3

3. To set any circuit node to any value, use the .NODESET
statement.

4. HSPICE then connects a voltage source equivalent, to each
initialized node (a current source, with a GMAX parallel
conductance, set with a .OPTION statement).

5. HSPICE next calculates a DC operating point, with
the .NODESET voltage source equivalent connected.

6. HSPICE disconnects the equivalent voltage sources, which you
set in the .NODESET statement, and recalculates the DC
operating point.

This is the DC operating point solution.

Figure 9-2 Equivalent Voltage Source: NODESET and .IC

v

' -
To Initialization
[=GMAX/ GMAX Node

The .IC statement provides both an initial guess and a solution for
selected nodes within the circuit. Nodes that you initialize with the .IC
statement, become part of the solution of the DC operating point.

You can also use the OFF option to initialize active devices. The OFF
option works with .IC and .NODESET voltages, as follows:

1. Ifthe netlistincludes any .IC or NODESET statements, HSPICE
sets node voltages, according to those statements.

2. If you set the OFF option, then HSPICE sets values to zero, for
the terminal voltages of all active devices (BJTs, diodes,
MOSFETs, JFETs, MESFETS) that are not set in .IC
or .NODESET statements, or by sources.

Initializing DC/Operating Point Analysis: Initialization and Analysis
9-4

3. If element statements specify any IC parameters, HSPICE sets
those initial conditions.

4. HSPICE uses the resulting voltage settings, as the initial guess
at the operating point.

Use OFF to find an exact solution, during an operating point
analysis, in a large circuit. The majority of device terminals are at
zero volts, for the operating point solution. To initialize the
terminal voltages to zero, for selected active devices, set the
OFF parameter, in the element statements for those devices.

After HSPICE finds a DC operating point, use .SAVE to store
operating-point node voltages in a <design>.ic file. Then use
the .LOAD statement to restore operating-point values, from the
ic file for later analyses.

When you set initial conditions for Transient Analysis:

* If you include UIC in a .TRAN statement, HSPICE starts a
transient analysis, using node voltages specified in an .IC
statement.

» Use the .OP statement, to store an estimate of the DC operating
point, during a transient analysis.

* Aninternal timestep too small error message indicates that the
circuit failed to converge. The cause of the failure can be that
HSPICE cannot use stated initial conditions to calculate the
actual DC operating point.

Initializing DC/Operating Point Analysis: Initialization and Analysis
9-5

DC Initialization and Operating Point Statements

.OP Statement — Operating Point

When you include an .OP statement in an input file, HSPICE
calculates the DC operating point of the circuit. You can also use
the .OP statement to produce an operating point, during a transient
analysis. You can include only one .OP statement in a simulation.

If an analysis requires calculating an operating point, you do not
need to specify the .OP statement; HSPICE calculates an operating
point. If you use a .OP statement, and if you include the UIC keyword
in a .TRAN analysis statement, then simulation omits the time =0
operating point analysis, and issues a warning in the output listing.

SYNTAX:

.OP <format> <tinme> <fornmat> <ti me>

Table 9-1 .OP Syntax

Parameter Description

format Any of the following keywords. Only the first letter is required. Default = ALL

e ALL: Full operating point, including voltage, currents, conductances, and
capacitances. This parameter outputs voltage/current for the specified
time.

« BRIEF: Produces a one-line summary of each element’s voltage,
current, and power. Current is stated in milliamperes, and power is in
milliwatts.

« CURRENT: Voltage table, with a brief summary of element currents and
power.

« DEBUG: Usually invoked only if a simulation does not converge. Debug
prints back the non-convergent nodes, with the new voltage, old voltage,
and the tolerance (degree of non-convergence). It also prints back the
non-convergent elements, with their tolerance values.

* NONE: Inhibits node and element print-outs, but performs additional
analysis that you specify.

 VOLTAGE: Voltage table only.

The preceding keywords are mutually- exclusive; use only one at a time.

time Place this parameter directly after ALL, VOLTAGE, CURRENT, or DEBUG.
It specifies the time at which HSPICE prints the report.

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements
9-6

EXAMPLE 1:

The following example calculates:

» Operating point voltages and currents, for the DC solution.
* Currents at 10 ns, for the transient analysis.

 Voltages at 17.5 ns, 20 ns and 25 ns, for the transient analysis.
.OP .5NS CUR 10NS VOL 17.5NS 20NS 25NS

EXAMPLE 2:

The following example calculates the complete DC operating point
solution. The next section shows a printout of the solution.

. OP

Output

*HExxx OPERATI NG PO NT | NFORMATI ONTNOM = 25. 000
TEMP = 25. 000
*xxx*x OPERATI NG PO NT STATUS IS ALL SI MJULATION TIME | S 0.

NCDE VOLTAGE NODE VOLTAGE NCDE VOLTAGE

+0:2 =0 0:3 = 437.3258M 0:4 = 455.1343M

+ 0:5 = 478.6763M 0:6 = 496.4858M 0:7 = 537.8452M

+ 0:8 = 555.6659M 0:10 = 5.0000 0:11 = 234. 3306M
*x*xx VOLTAGE SOURCES

SUBCKT

ELEMENT 0: VNCE 0: VN7 0: VPCE 0: VP7

VOLTS 0 5. 00000 0 -5. 00000

AMPS -2.07407U -405.41294P 2.07407U 405. 41294P

PONER 0. 2.02706N 0. 2.02706N

TOTAL VOLTAGE SOURCE POWNER DI SSI PATI ON = 4. 0541 N WATTS
**** Bl POLAR JUNCTI ON TRANSI STORS

SUBCKT
ELEMENT 0: QNL 0: Q\2 0: QN3 0: Q\4
MODEL 0: N1 0: N1 0: N1 0: N1
| B 999. 99912N 2. 00000U 5. 00000U 10. 00000U
IC -987.65345N -1.97530U -4.93827U -9.87654U

VBE 437.32588M 455.13437M 478.67632M 496. 48580M
VCE 437.32588M 17.80849M 23.54195M 17. 80948M
VBC 437.32588M 455.13437M 478.67632M 496. 48580M

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements
9-7

VS 0. 0. 0. 0
PONER 5. 39908N 875.09107/N 2.27712U 4. 78896U
BETAD -987.65432M -987. 65432M -987. 65432M -987. 65432M

GM 0. 0. 0. 0

RPI 2. 0810E+06 1. 0405E+06 416.20796K 208. 10396K
RX 250. 00000M 250. 00000M 250. 00000M 250. 00000M
RO 2. 0810E+06 1. 0405E+06 416.20796K 208. 10396K
CPI 1. 43092N 1. 44033N 1. 45279N 1. 46225N

cw 954.16927P 960. 66843P 969. 64689P 977. 06866P
CCS 800. 00000P 800. 0O0000P 800. 00000P 800. 00000P
BETAAC 0. 0. 0. 0
FT 0. 0. 0. 0

Element Statement IC Parameter

Use the element statement parameter, IC = <val>, to set DC terminal
voltages, for selected active devices.

HSPICE uses the value, set in IC = <val>, as the DC operating point
value, in the DC solution.

EXAMPLE:

This example describes an H element dependent-voltage source:

HXCC 13 20 VIN1 VIN2 IC = 0.5, 1.3

The current, through VIN1, initializes to 0.5 mA. The current, through
VINZ2, initializes to 1.3 mA.

IC and .DCVOLT Initial Condition Statements

Use the .IC statement, or the .DCVOLT statement, to set transient
initial conditions in HSPICE How it initializes depends on whether
the .TRAN analysis statement includes the UIC parameter.

If you specify the UIC parameter in the .TRAN statement, HSPICE
does not calculate the initial DC operating point, but directly enters
transient analysis. Transient analysis uses the .IC initialization values

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements
9-8

as part of the solution, for timepoint zero (calculating the zero
timepoint applies a fixed equivalent voltage source). The .IC
statement is equivalent to specifying the IC parameter on each
element statement, but is more convenient. You can still specify the
IC parameter, but it does not have precedence over values set in
the .IC statement.

If you do not specify the UIC parameter in the .TRAN statement,
HSPICE computes the DC operating point solution, before the
transient analysis. The node voltages that you specify in the .IC
statement are fixed, to determine the DC operating point. Transient
analysis releases the initialized nodes, to calculate the second and
later time points.

SYNTAX:
.1C V(nodel) = vall V(node2) = val2 ...

. DCVOLT V(nodel) = vall V(node2) = val2 ...

.DCVAOLT V nodel vall <node2 val2 ...>

Table 9-2 .IC Syntax

Parameter | Description

vall ... Specifies voltages. The significance of these voltages depends on whether
you specify the UIC parameter in the .TRAN statement.
nodel ... Node numbers or names can include full paths, or circuit numbers.

EXAMPLE:

JCV(11) =5 V(4) = -5 V(2) = 2.2
.DCVOLT 11 5 4 -5 2 2.2

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements

9-9

.NODESET Statement

.NODESET initializes all specified nodal voltages, for DC operating
point analysis. Use the .NODESET statement, to correct
convergence problems in DC analysis. If you set the node values in
the circuit, close to the actual DC operating point solution, you
enhance convergence of the simulation. The HSPICE simulator
uses the NODESET voltages, only in the first iteration.

SYNTAX:

. NODESET V(nodel) = vall <V(node2) = val2 ...>

or

. NODESET nodel val 1 <node2 val 2>

Table 9-3 .NODESET Syntax

Parameter | Description
nodel ... Node numbers or names can include full paths or circuit numbers.
vall Specifies voltages.

EXAMPLE:

. NODESET V(5: SETX) = 3.5
.NODESET V(12) = 4.5 V(4
.NODESET 12 4.5 4 2.23 1

V V(X1.X2. VINT) = 1V
) = 2.23

1

SAVE and LOAD Statements

HSPICE saves the operating point, unless you use the .SAVE
LEVEL = NONE statement. HSPICE restores the saved operating-
point file, only if the input file contains a .LOAD statement.

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements
9-10

If any node initialization commands, such as .NODESET and .IC,
appear in the netlist after the .LOAD command, then they overwrite
the .LOAD initialization. If you use this feature to set particular states
for multistate circuits (such as flip-flops), you can still use the .SAVE
command to speed up the DC convergence.

.SAVE and .LOAD work even on changed circuit topologies. Adding
or deleting nodes results in a new circuit topology. HSPICE initializes
the new nodes, as if you did not save an operating point. HSPICE
ignores references to deleted nodes, but initializes coincidental
nodes to the values that you saved from the previous run.

When you initialize nodes to voltages, HSPICE inserts Norton-
equivalent circuits at each initialized node. The conductance value
of a Norton-equivalent circuit is GMAX = 100, which might be too
large for some circuits.

If using .SAVE and .LOAD does not speed up simulation, or causes
simulation problems, use .OPTION GMAX = 1le-12 to minimize the
effect of Norton-equivalent circuits on matrix conductances.

HSPICE still uses the initialized node voltages to initialize devices.

.SAVE Statement

The .SAVE statement in HSPICE stores the operating point of a
circuit, in a file that you specify. For quick DC convergence in
subsequent simulations, use the .LOAD statement to input the
contents of this file. HSPICE saves the operating point by default,
even if the HSPICE input file does not contain a .SAVE statement. To
not save the operating point, specify .SAVE LEVEL = NONE.

You can save the operating point data as either an .IC or
a .NODESET statement.

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements
9-11

SYNTAX:

. SAVE <TYPE = type_keyword> <FILE = save file>
+ <LEVEL = | evel keyword> <TIME = save_ti nme>

Table 9-4 .SAVE Syntax

Parameter

Description

type_keyword

Storage method, for saving the operating point. The type can be one of the
following. Default is NODESET.

» .NODESET: Stores the operating point as a .NODESET statement. Later
simulations initialize all node voltages to these values, if you use
the .LOAD statement. If circuit conditions change incrementally, DC
converges within a few iterations.

» .IC: Stores the operating point as a .IC statement. Later simulations
initialize node voltages to these values if the netlist includes the .LOAD
statements.

save_file

Name of the file that stores DC operating point data. The file name format is
<design>.ic#. Default is <design>.icO.

level_keyword

Circuit level, at which you save the operating point. The level can be one of
the following.

e ALL (default): Saves all nodes, from the top to the lowest circuit level. This
option offers the greatest improvement in simulation time.

» TOP: Saves only nodes in the top-level design. Does not save subcircuit
nodes.

» NONE: Does not save the operating point.

save_time

Time during transient analysis, when HSPICE saves the operating point.
HSPICE requires a valid transient analysis statement, to save a DC operating
point. Default = 0.

A parameter or temperature sweep saves only the first operating

point.

EXAMPLE:

If the input netlist file contains the statement:
.TEMP -25 0 25

then HSPICE saves the operating point corresponding to .TEMP -25.

Initializing DC/Operating Point Analysis: DC Initialization and Operating Point Statements

9-12

.LOAD Statement

Use the .LOAD statement to input the contents of a file, that you
stored using the .SAVE statement in HSPICE.

Files stored with the .SAVE statement contain operating point
information, for the point in the analysis at which you
executed .SAVE.

Do not use the .LOAD command for concatenated netlist files.

SYNTAX:
.LOAD <FILE = |l oad file>

load_file is the name of the file, in which .SAVE saved an operating
point, for the circuit under simulation.The format of the file name is
<design>.ic#. Default is <design>.icO, where design is the root name
of the design.

.DC Statement—DC Sweeps
You can use the .DC statement in DC analysis, to:
« Sweep any parameter value.
* Sweep any source value.
* Sweep temperature range.
» Perform a DC Monte Carlo (random sweep) analysis.
« Perform a data-driven sweep.
» Perform a DC circuit optimization, for a data-driven sweep.
« Perform a DC circuit optimization, using start and stop.
» Perform a DC model characterization.

The format for the .DC statement depends on the application that
uses it, as shown in the examples that follow.

Initializing DC/Operating Point Analysis: .DC Statement—DC Sweeps
9-13

SYNTAX:

Sweep or Parameterized Sweep:
.DC varl START = startl STOP = stopl STEP = incrl

.DC var1l START = <param expr 1> STOP = <param expr 2>
+ STEP = <par am expr 3>

.DCvarl startl stopl incrl
+ <SWVEEP var2 type np start2 stop2>

.DCvarl startl stopl incrl <var2 start2 stop2 incr2>

Data-Driven Sweep:
.DCvarl type np startl stopl <SWEEP DATA = dat ann»

. DC DATA = dat annkSWEEP var2 start2 stop2 incr2>
. DC DATA = dat anm
Monte Carlo:

.DC varl type np startl stopl <SWEEP MONTE = val >
. DC MONTE = val

Optimization:

. DC DATA = datanm OPTI M ZE = opt _par_fun
+ RESULTS = nmeasnanes MODEL = opt nod

.DC varl startl stopl SWEEP OPTI M ZE = OPTxxx
+ RESULTS = neasnane MODEL = opt nod

Initializing DC/Operating Point Analysis: .DC Statement—DC Sweeps
9-14

Keywords and Parameters
Table 9-5 .DC Syntax

Parameter Description

DATA = datanm | Datanm is the reference name of a .DATA statement.

incrl ... Voltage, current, element, or model parameters; or temperature increments.

MODEL Specifies the optimization reference name. The .MODEL OPT statement uses
this name in an optimization analysis

MONTE = val val is the number of randomly-generated values, which you can use to select
parameters from a distribution. The distribution can be Gaussian, Uniform, or
Random Limit.

np Number of points per decade or per octave, or just number of points, based
on which keyword precedes it.

OPTIMIZE Specifies the parameter reference name, used for optimization in the .PARAM
statement

RESULTS Measure name used for optimization in the .MEASURE statement

startl ... Starting voltage, current, element, or model parameters; or temperature
values. If you use the POI (list of points) variation type, specify a list of
parameter values, instead of start stop.

stopl ... Final voltage, current, any element, model parameter, or temperature values.

SWEEP Keyword, to indicate that a second sweep has a different type of variation
(DEC, OCT, LIN, POI, or DATA statement; or MONTE = val)

TEMP Keyword, to indicate a temperature sweep.

type Can be any of the following keywords:
 DEC — decade variation
e OCT — octave variation
e LIN — linear variation
e POI — list of points

varl ... « Name of an independent voltage or current source, or

« Name of any element or model parameter, or

 TEMP keyword (indicating a temperature sweep).

HSPICE supports a source value sweep, which refers to the source name
(SPICE style). However, if you select a parameter sweep, a .DATA statement,
and a temperature sweep, then you must select a parameter name for the
source value. A later .DC statement must refer to this name. The parameter
name must not start with V, I, or TEMP.

Initializing DC/Operating Point Analysis: .DC Statement—DC Sweeps
9-15

EXAMPLE 1:

The following example sweeps the value of the VIN voltage source,
from 0.25 volts to 5.0 volts, in increments of 0.25 volts.

.DC VIN 0.25 5.0 0. 25

EXAMPLE 2:

The following example sweeps the drain-to-source voltage, from 0 to
10V, in 0.5 V increments, at VGS values of 0, 1, 2, 3, 4, and 5 V.

.DC VDS 0 10 0.5 VG5 0 5 1

EXAMPLE 3:

The following example starts a DC analysis of the circuit, from -55°C
to 125°C, in 10°C increments.

.DC TEMP -55 125 10

EXAMPLE 4:

The following script runs a DC analysis, at five temperatures: 0, 30,
50, 100, and 125°C.

.DC TEMP PO 5 0 30 50 100 125

EXAMPLE 5:

The following example runs a DC analysis on the circuit, at each
temperature value. The temperatures result from a linear
temperature sweep, from 25°C to 125°C (five points), which sweeps
a resistor value named xval, from 1 k to 10 k, in 0.5 k increments.

.DC xval 1k 10k .5k SWEEP TEMP LIN 5 25 125

Initializing DC/Operating Point Analysis: .DC Statement—DC Sweeps

9-16

EXAMPLE 6:

The example below specifies a sweep of the parl value, from 1 k to
100 k, in increments of 10 points per decade.

. DC DATA = dat anm SWEEP par1 DEC 10 1k 100k

EXAMPLE 7:

The next example also requests a DC analysis, at specified
parameters in the .DATA datanm statement. It also sweeps the parl
parameter, from 1k to 100k, in increments of 10 points per decade.

.DC par1l DEC 10 1k 100k SWEEP DATA = dat anm

EXAMPLE 8:

The final example invokes a DC sweep of the parl parameter from
1k to 100k by 10 points per decade, using 30 randomly generated
(Monte Carlo) values.

.DC parl DEC 10 1k 100k SWEEP MONTE = 30

Schmitt Trigger Example

*file: bjtschnt.spbipolar schmtt trigger
. OPTI ON post = 2

vcc 6 0 dc 12

vin 1 0 dc O pw (0,0 2.5u, 12 5u,0)

cbl 2 4 . 1pf

rcl 6 2 1k

rc2 6 5 1k

rbl 2 4 5.6k

rb2 4 0 4.7k

re 3 0 .47k

*

di ode 0 1 dnod
gl 2 1 3 bnod 1 ic
g2 54 3 bnod 1 ic
*

0,8
.5,0.2

Initializing DC/Operating Point Analysis: .DC Statement—DC Sweeps
9-17

.dc vin 0,12,.1

.nmodel dnod d is = 1le-15 rs = 10

.nmodel bnod npn is = le-15 bf = 80 tf = 1n

+ cjc = 2pf cje = 1pf rc = 50 rb = 100 vaf = 200
.plot v(1) v(5)

.graph dc nodel = schmttplot input = v(1)

+ output =v(5) 4.05.0

.nmodel schmttplot plot xscal = 1 yscal =1 xmn = .5u
+ xmax = 1. 2u
.end

Other DC Analysis Statements

HSPICE also provides the following DC analysis statements. Each
statement uses the DC-equivalent model of the circuit, in its analysis.
For .PZ, the equivalent circuit includes capacitors and inductors.

Table 9-6 DC Analysis Statements

Statement | Description

Pz Performs pole/zero analysis (you do not need to specify .OP)

.SENS Obtains DC small-signal sensitivities of output variables, for circuit
parameters (you do not need to specify . OP)

TF Calculates DC small-signal values for transfer functions (ratio of output
variable, to input source). You do not need to specify .OP.

HSPICE provides DC control options, and DC initialization
statements, which model resistive parasitics and initialize nodes.
These statements enhance convergence properties, and accuracy,
of simulation. This section describes how to perform DC-related,
small-signal analysis.

Initializing DC/Operating Point Analysis: Other DC Analysis Statements
9-18

.SENS Statement — DC Sensitivity Analysis

If the input file includes a .SENS statement, HSPICE determines DC
small-signal sensitivities for each specified output variable, relative
to every circuit parameter. The sensitivity measurement is the partial
derivative of each output variable, for a specified circuit element,
measured at the operating point, and normalized to the total change
in output magnitude. Therefore, the sum of the sensitivities of all
elements is 100%. HSPICE calculates sensitivities for:

e resistors

» voltage sources

e current sources

« diodes

« BJTs (including Level 4, the VBIC95 model)

» MOSFETs (Level49 and Level53, Version=3.22).

You can perform only one .SENS analysis per simulation. If you
specify more than one .SENS statement, HSPICE runs only the
last .SENS statement.

SYNTAX:
. SENS ovl <ov2 ...>

Table 9-7 .SENS Syntax

Parameter | Description

ovlov2 ... Branch currents, or nodal voltage, for DC component-sensitivity
analysis.
EXAMPLE:

.SENS V(9) V(4,3) V(17) 1(VCC

Initializing DC/Operating Point Analysis: Other DC Analysis Statements
9-19

Note: The .SENS statement can generate very large amounts of
output for large circuits.

.TF Statement — DC Small-Signal Transfer Function
Analysis

The transfer function statement (.TF) defines small-signal output and
input, for DC small-signal analysis. When you use the .TF statement,
HSPICE computes:

« DC small-signal value of the transfer function (output/input),.
* Input resistance.

» Output resistance.

SYNTAX:

. TF ov srcnam

Table 9-8 .TF Syntax

Parameter Description

oV Small-signal output variable.

srcnam Small-signal input source.
EXAMPLE:

.TF V(5,3) VIN
.TF 1 (VLOAD) VI N

For the first example, HSPICE computes the ratio of V(5,3) to VIN.
This is the ratio of small-signal input resistance at VIN, to the small-
signal output resistance (measured across nodes 5 and 3). If you
specify more than one .TF statement in a single simulation, HSPICE
runs only the last .TF statement.

Initializing DC/Operating Point Analysis: Other DC Analysis Statements
9-20

.PZ Statement— Pole/Zero Analysis
SYNTAX:
. PZ out put i nput

. PZ ov srcnane

Table 9-9 .PZ Syntax

Parameter | Description

Pz Invokes the pole/zero analysis.
input Input source. Can be the name of any independent voltage or current source.
output Output variables, which can be:

« Any node voltage, V(n).
» Any branch current, I(branch_name).

ov Output variable: a node voltage V(n), or branch current I(element)
srcnam Input source: an independent voltage or current source name
EXAMPLE:

.PZ V(10) VIN
.PZ I(RL) ISORC

See “Pole/Zero Analysis” in the HSPICE Applications Manual, for
complete information about pole/zero analysis.

DC Initialization Control Options

Use control options in a DC operating-point analysis, to control DC
convergence properties and simulation algorithms. Many of these
options also affect transient analysis, because DC convergence is
an integral part of transient convergence. Include the following
options for both DC and transient convergence:

« Absolute and relative voltages.
e Current tolerances.

« Matrix options.

Initializing DC/Operating Point Analysis: DC Initialization Control Options
9-21

Use .OPTION statements to specify the following options, which
control DC analysis (see Chapter 8, “Simulation Options”):

ABSTOL GSHUNT

CAPTAB | CSVEEP OFF
CSHDC | TLPTRAN Pl VOT
DCCAP | TL1 Pl VREF
DCFOR | TL2 Pl VREL
DCHOLD KCLTEST Pl VTOL
DCSTEP MAXAMP RESM N
DV NEWIOL SPARSE
GRAWP NCPI V

DC and AC analysis also use some of these options. Many of these
options also affect the transient analysis, because DC convergence
Is an integral part of transient convergence. For a description of
transient analysis, see Chapter 10, “Transient Analysis”.

Table 9-10 DC Initialization Control Options (Sheet 1 of 5)

Parameter

Description

ABSTOL =X

Sets the absolute node voltage error tolerance, for DC and transient analysis.
Decrease ABSTOL, if accuracy is more important than convergence time.
ABSTOL is the same as ABSI.

CAPTAB

Prints single-plate node capacitances, for diodes, BJTs, JFETs, MOSFETSs, and
passive capacitors, at each operating point.

CSHDC

Same option as CSHUNT, but used only with the CONVERGE option.

DCCAP

Generates C-V plots. Prints capacitance values of a circuit (both model and
element) during a DC analysis. You can use a DC sweep of the capacitor, to
generate C-V plots. Default = 0 (off).

DCFOR =X

Use with DCHOLD and .NODESET to enhance DC convergence. DCFOR sets
how many iterations to calculate, after a circuit converges in a steady state. The
number of iterations after convergence is usually zero. DCFOR adds iterations
(and computing time) when calculating a DC circuit solution, to ensure that a
circuit did not falsely converge. Default = 0.

DCHOLD = x

Use DCFOR and DCHOLD together, to initialize DC analysis. DCFOR and
DCHOLD enhance convergence properties in DC simulation. DCFOR and
DCHOLD work with .NODESET.

DCHOLD specifies how many iterations to hold a node, at the .NODESET
voltage values. The effects of DCHOLD on convergence differ, according to the
DCHOLD value, and the number of iterations before DC converges.

Initializing DC/Operating Point Analysis: DC Initialization Control Options

9-22

Table 9-10

DC Initialization Control Options (Sheet 2 of 5)

Parameter

Description

If a circuit converges in a steady state, in fewer than DCHOLD iterations, the DC
solution includes the values set in .NODESET.

If the circuit requires more than DCHOLD iterations to converge, HSPICE
ignores the .NODESET values, and calculates the DC solution, using
the .NODESET fixed-source voltages, open-circuited. Default = 1.

DCSTEP =x

Converts DC model and element capacitors to a conductance, to enhance DC
convergence. HSPICE divides the value of the element capacitors by DCSTEP,
to model DC conductance. Default = 0 (seconds). \

Maximum iteration-to-iteration voltage change, for all circuit nodes, in both DC
and transient analysis. High-gain bipolar amplifiers can require values of 0.5 to
5.0, to achieve a stable DC operating point. Large CMOS digital circuits
frequently require about 1 volt. Default = 1000 (or 1e6 if DCON = 2).

GRAMP = x

HSPICE sets the value during auto-convergence (default=0). Use GRAMP, with
the GMINDC convergence-control option, to find the smallest GMINDC value
that results in DC convergence. For a description of GMINDC, see on page 9-
28.

GRAMP specifies the conductance range, over which DC operating point
analysis sweeps GMINDC. HSPICE replaces GMINDC values over this range,
simulates each value, and uses the lowest GMINDC value where the circuit
converges in a steady state.

» If you sweep GMINDC between 1e-12 mhos (default) and 1e-6 mhos,
GRAMP is 6 (value of the exponent difference, between the default and the
maximum conductance limit). In this example:

 HSPICE first sets GMINDC to 1le-6 mhos, and simulates the circuit.

 If circuit simulation converges, HSPICE sets GMINDC to 1le-7 mhos, and
simulates the circuit.

The sweep continues until HSPICE simulates all values on the GRAMP ramp.

If the combined GMINDC and GRAMP conductance is greater than 1e-3 mho,
false convergence can occur.

GSHUNT

Conductance added from each node, to ground. Default is zero. Add a small
GSHUNT value to each node, to help solve internal timestep too small
problems, caused by high-frequency oscillations or numerical noise.

ICSWEEP

Saves the current analysis result of a parameter or temperature sweep, as the
starting point in the next analysis in the sweep.

* If ICSWEEP = 1 (default), the next analysis uses the current results.
» If ICSWEEP = 0, the next analysis does not use current analysis results.

Initializing DC/Operating Point Analysis: DC Initialization Control Options
9-23

Table 9-10 DC Initialization Control Options (Sheet 3 of 5)

Parameter

Description

ITLPTRAN

Controls the iteration limit used in the final try of the pseudo-transient method,
in OP or DC analysis. If simulation fails in the final try of the pseudo-transient
method, enlarge this option. Default is 30.

ITLL =X

Maximum DC iterations. Increasing this value rarely improves convergence in
small circuits. Values as high as 400 can result in convergence for some large
circuits with feedback (such as operational or sense amplifiers). However, to
converge, most models do not require more than 100 iterations. Set .OPTION
ACCT to list how many iterations an operating point requires. Default is 200.

ITL2 = val

Iteration limit for the DC transfer curve. Increasing this limit improves
convergence, only for very large circuits. Default is 50.

KCLTEST

Activates a KCL (Kirchhoff’'s Current Law) test. This test increases simulation
time, especially for large circuits, but accurately checks the solution. Default = 0

If you set this value to 1, HSPICE sets these options:

» Sets RELMOS and ABSMOS options to 0 (off).

* Sets ABSI to 1e-6 A.

» Sets RELI to 1e-6.

To satisfy the KCL test, each node must satisfy this condition:

‘Zib‘ <RELI Dz‘ib‘ + ABSI ibs are the node currents.

MAXAMP = x

Sets the maximum current, through voltage-defined branches (voltage sources
and inductors). If the current exceeds the MAXAMP value, HSPICE reports an
error. Default = 0.0.

NEWTOL

Calculates one or more iterations past convergence, for every calculated DC
solution and timepoint circuit solution. If you do not set NEWTOL, after HSPICE
determines convergence, the convergence routine ends, and the next program
step begins. Default is 0.

NOPIV

Prevents HSPICE from automatically switching to pivoting-matrix factoring, if a
nodal conductance is less than PIVTOL. NOPIV inhibits pivoting (see PIVOT).

OFF

For all active devices, initializes terminal voltages to zero, if you did not initialize
them to other values. For example, if you did not initialize the drain and source
nodes of a transistor (using .NODESET or .IC statements, or connecting them
to sources), then OFF initializes all nodes of the transistor to zero.

HSPICE checks the OFF option before element IC parameters. If you assign an
element IC parameter to a node, simulation initializes the node to the element
IC parameter value, even if the OFF option has set it o zero. Use the OFF
element parameter to initialize terminal voltages to zero (for specific active
devices), or for exact DC operating-point solutions for large circuits.

Initializing DC/Operating Point Analysis: DC Initialization Control Options

9-24

Table 9-10 DC Initialization Control Options (Sheet 4 of 5)

Parameter Description
PIVOT = x Selects a pivot algorithms. Use these algorithms to reduce simulation time, and
(same as to achieve convergence in circuits that produce hard-to-solve matrix equations.

SPARSE = x) To select the pivot algorithm, set PIVOT to one of these values:
0: Original non-pivoting algorithm.

1: Original pivoting algorithm.

2: Picks the largest pivot in the row.

3: Picks the best pivot in a row.

10 (default): Fast, non-pivoting algorithm; requires more memory.

11: Fast, pivoting algorithm; requires more memory than PIVOT values less
than 11.

12: Picks the largest pivot in the row; requires more memory than PIVOT
values less than 12.

13: Fast, best pivot: faster; uses more memory than PIVOT values less than 13.

The fastest algorithm is PIVOT = 13, which can improve simulation time up to
ten times, on very large circuits. However, PIVOT = 13 requires substantially
more memory for simulation.

Some circuits with large conductance ratios, such as switching regulator
circuits, might require pivoting.

If PIVTOL = 0, HSPICE automatically changes from non-pivoting, to a row-pivot
strategy, if it detects any diagonal-matrix entry less than PIVTOL. This strategy
provides the time and memory advantages of hon-pivoting inversion, and
avoids unstable simulations and incorrect results. Use .OPTION NOPIV, to
prevent HSPICE from pivoting. For very large circuits, PIVOT = 10, 11, 12, or
13, can require excessive memory.

If HSPICE switches to pivoting during a simulation, it prints the message:
pivot change on the fly

followed by the node numbers that cause the problem. Use
.OPTION NODE to cross-reference a node to an element.

SPARSE is the same as PIVOT.

PIVREL = x Sets the maximum and minimum ratio of a row or matrix. Use only if PIVOT = 1.
Large values for PIVREL can result in very long matrix-pivot times. If the value
is too small, however, no pivoting occurs. Start with small values of PIVREL,
using an adequate (but not excessive) value, for convergence and accuracy.
Default = 1E-20 (max = 1e-20, min = 1).

PIVREF Pivot reference. Use PIVREF in PIVOT = 11, 12, or 13, to limit the size of the
matrix. Default = 1e+8.

Initializing DC/Operating Point Analysis: DC Initialization Control Options
9-25

Table 9-10 DC Initialization Control Options (Sheet 5 of 5)

Parameter Description

PIVTOL = x Absolute minimum value for which HSPICE accepts a matrix entry as a pivot. If
PIVOT=0, PIVTOL is the minimum conductance in the matrix. Default=1.0e-15.

PIVTOL must be less than GMIN or GMINDC. Values that approach 1 increase
the pivot.

RESMIN = x Minimum resistance for all resistors, including parasitic and inductive
resistances. Default = 1e-5 (ohm). Range: 1e-15 to 10 ohm.

SPARSE = x Same as PIVOT.

(same as
PIVOT = x)

Accuracy and Convergence

Convergence is the ability to solve a set of circuit equations, within
specified tolerances, and within a specified number of iterations. In
numerical circuit simulation, a designer specifies a relative and
absolute accuracy for the circuit solution. The simulator iteration
algorithm then attempts to converge to a solution that is within these
set tolerances. That is, if consecutive simulations achieve results
within the specified accuracy tolerances, circuit simulation has
converged. How quickly the simulator converges, is often a primary
concern to a designer—especially for preliminary design trials. So
designers willingly sacrifice some accuracy, for simulations that
converge quickly.

Accuracy Tolerances

HSPICE uses accuracy tolerances that you specify, to assure
convergence. These tolerances determine when, and whether, to
exit the convergence loop. For each iteration of the convergence
loop, HSPICE subtracts previously-calculated values from the new
solution, and compares the result with the accuracy tolerances.

Initializing DC/Operating Point Analysis: Accuracy and Convergence
9-26

If the difference between two consecutive iterations is within the
specified accuracy tolerances, the circuit simulation has converged.

| VK- vnkl | < = accuracy tolerance
« VnKis the solution at the n timepoint, for iteration k.

« Vn¥lis the solution at the n timepoint, for iteration k - 1.

As Table 9-11 shows, HSPICE defaults to specific absolute and
relative values. You can change these tolerances, so that simulation
time is not excessive, but accuracy is not compromised. Accuracy
Control Options on page 9-28 describes the options in Table 9-11.

Table 9-11 Absolute and Relative Accuracy Tolerances

Type Option Default

Nodal Voltage Tolerances ABSVDC 50 pv
RELVDC .001

Current Element Tolerances ABSI 1nA
RELI .01
ABSMOS 1 uA
RELMOS .05

HSPICE compares nodal voltages and element currents, to the
values from the previous iteration.

» |f the absolute value of the difference is less than ABSVDC or
ABSI, then the node or element has converged.

ABSV and ABSI set the floor value, below which HSPICE ignores
values. Values above the floor use RELVDC and RELI as relative
tolerances. If the iteration-to-iteration absolute difference is less
than these tolerances, then it is convergent.

Note: ABSMOS and RELMOS are the tolerances for MOSFET drain
currents.

Initializing DC/Operating Point Analysis: Accuracy and Convergence
9-27

Accuracy settings directly affect the number of iterations before
convergence.

» If accuracy tolerances are tight, the circuit requires more time to
converge.

» If the accuracy setting is too loose, the resulting solution can be
inaccurate and unstable.

Table 9-12 shows an example of the relationship between the
RELVDC value, and the number of iterations.

Table 9-12 RELV vs. Accuracy and Simulation Time for 2 Bit Adder

RELVDC Iteration Delay (ns) Period (ns) Fall time (ns)
.001 540 31.746 14.336 1.2797
.005 434 31.202 14.366 1.2743
.01 426 31.202 14.366 1.2724
.02 413 31.202 14.365 1.3433
.05 386 31.203 14.365 1.3315
A1 365 31.203 14.363 1.3805
2 354 31.203 14.363 1.3908
3 354 31.203 14.363 1.3909
4 341 31.202 14.363 1.3916
A4 344 31.202 14.362 1.3904

Accuracy Control Options

The default control option settings are designed to maximize
accuracy, without significantly degrading performance. For a
description of these options and their settings, see Simulation Speed
and Accuracy on page 10-24.

Initializing DC/Operating Point Analysis: Accuracy and Convergence

9-28

Table 9-13 Convergence Control Options (Sheet 1 of 3)

Parameter

Description

ABSH =x

Sets the absolute current change, through voltage-defined branches (voltage
sources and inductors). Use ABSH with DI and RELH, to check for current
convergence. Default is 0.0.

ABSI = x

Sets the absolute error tolerance for branch currents, in diodes, BJTs, and
JFETs, during DC and transient analysis. Decrease ABSI, if accuracy is more
important than convergence time.

To analyze currents less than 1 nanoamp, change ABSI to a value at least two
orders of magnitude smaller than the minimum expected current.

Default is 1e-9 for KCLTEST =0, or 1e-6 for KCLTEST = 1.

ABSMOS = x

Current error tolerance (for MOSFET devices), in DC or transient analysis. The
ABSMOS setting determines whether the drain-to-source current solution has
converged. The drain-to-source current converged if:

* The difference between the drain-to-source current in the last iteration,
versus the present iteration, is less than ABSMOS, or

» This difference is greater than ABSMOS, but the percent change is less than
RELMOS.

If other accuracy tolerances also indicate convergence, HSPICE solves the

circuit at that timepoint, and calculates the next timepoint solution. For low-

power circuits, optimization, and single transistor simulations, set

ABSMOS = 1e-12. Default is 1e-6 (amperes).

ABSVDC = x

Sets the minimum voltage for DC and transient analysis. If accuracy is more
critical than convergence, decrease ABSVDC. If you need voltages less than 50
micro-volts, reduce ABSVDC to two orders of magnitude less than the smallest
voltage. This ensures at least two significant digits. Typically, you do not need to
change ABSVDC, unless you simulate a high-voltage circuit. For 1000-volt
circuits, a reasonable value is 5 to 50 millivolts. Default=VNTOL (VNTOL
default = 50 mV).

CONVERGE

Invokes different methods to solve non-convergence problems

« CONVERGE = -1: Use with DCON = -1, to disable autoconvergence.

« CONVERGE = 0" Autoconvergence (default).

e CONVERGE = 1: Uses the Damped Pseudo Transient algorithm. If
simulation does not converge within the amount of CPU time (set in the
CPTIME control option), then simulation halts.

« CONVERGE = 2: Uses a combination of DCSTEP and GMINDC ramping.
Not used in the autoconvergence flow.

« CONVERGE = 3: Invokes the source-stepping method. Not used in the
autoconvergence flow.

Initializing DC/Operating Point Analysis: Accuracy and Convergence
9-29

Table 9-13

Convergence Control Options (Sheet 2 of 3)

Parameter

Description

< CONVERGE = 4: Uses the gmath ramping method.

Even you did not set it in an .OPTION statement, the CONVERGE option
activates if a matrix floating-point overflows, or if HSPICE reports a timestep too
small error. Default = 0. If a matrix floating-point overflows, CONVERGE = 1.

DCON = x

If a circuit cannot converge, HSPICE sets DCON = 1, and calculates:

v
DV = maxg).l, ?oa)%’ if DV = 1000

Imax

MINDCLD
Vmax is maximum voltage, and Imax is maximum current.
If the circuit cannot converge, HSPICE sets DCON = 2, which sets DV = 1e6.

If a circuit contains discontinuous models or uninitialized flip-flops, simulation
might not converge. Set DCON = -1 and CONVERGE = -1, to disable auto-
convergence. HSPICE then lists non-convergent nodes and devices.

GRAMP = maxgs, |Og:|_0|:G ITLL = ITL1+ 20 IGRAMP

DCTRAN

DCTRAN is an alias for CONVERGE. See CONVERGE.

DI =x

Sets the maximum iteration-to-iteration change in current, through voltage-
defined branches (voltage sources and inductors). Use his option only if the
value of the ABSH control option is greater than 0. Default = 0.0.

GMAX =X

Conductance, in parallel with a current source, for .IC and
.NODESET initialization circuitry. Some large bipolar circuits require you to set
GMAX=1, for convergence. Default=100 (mho).

RELH =x

Sets relative tolerance for currents, through voltage-defined branches (voltage
sources and inductors). Use RELH to check current convergence, but only if the
value of the ABSH control option is greater than zero. Default = 0.05.

GMINDC = x

Conductance in parallel to all pn junctions, and all MOSFET nodes except gate
(see Figure 4-2 on page 4-42), for DC analysis. GMINDC helps overcome DC
convergence problems, caused by low values of off-conductance, for pn
junctions and MOSFETs. You can use GRAMP to reduce GMINDC, by one order
of magnitude, for each step. Set GMINDC between 1e-4 and the PIVTOL value.
Default = 1e-12.

Large values of GMINDC can cause unreasonable circuit response. If your
circuit requires large values to converge, suspect a bad model or circuit. If a
matrix floating-point overflows, and if GMINDC is 1.0e-12 or less, HSPICE sets
it to 1.0e-11. HSPICE manipulates GMINDC in auto-converge mode (see
Autoconverge Process on page 9-31).

Initializing DC/Operating Point Analysis: Accuracy and Convergence

9-30

Table 9-13 Convergence Control Options (Sheet 3 of 3)

Parameter

Description

RELI = x

Sets the relative error/tolerance change, from iteration to iteration. This value
determines convergence for all currents, in diode, BJT, and JFET devices.
(RELMOS sets the tolerance for MOSFETSs). This is the percent change in
current, from the value calculated at the previous timepoint.

+ Default = 0.01 for KCLTEST = 0.
+ Default = 1e-6 for KCLTEST = 1.

RELMOS = x

Sets the relative error tolerance (percent) for drain-to-source current, from
iteration-to-iteration. This parameter determines convergence, for currents in
MOSFET devices. (RELI sets the tolerance for other active devices.) Sets the
change in current, from the value calculated at the previous timepoint. HSPICE
uses the RELMOS value, only if the current is greater than the ABSMOS floor
value. Default = 0.05.

RELV =x

Sets the relative error tolerance, for voltages. If voltage or current exceeds the
absolute tolerance, a RELV test determines convergence. Increasing RELV
increases the relative error. You should generally maintain RELV at its default
value. RELV conserves simulator charge. For voltages, RELV is the same as
RELTOL. Default = 1e-3.

RELVDC = x

Sets the relative error tolerance, for voltages. If voltage or current exceeds their
absolute tolerances, the RELVDC test determines convergence. Increasing
RELVDC increases the relative error. You should generally maintain RELVDC at
its default value. RELVDC conserves simulator charge. Default = RELTOL
(RELTOL default = 1e-3).

Autoconverge Process

If a circuit does not converge in the number of iterations that ITL1
specifies, HSPICE initiates an auto-convergence process. This
process manipulates DCON, GRAMP, and GMINDC, and even
CONVERGE in some cases. Figure 9-3 on page 9-33 shows the
autoconverge process.

Note: HSPICE uses autoconvergence in transient analysis, but it

also uses autoconvergence in DC analysis, if the Newton-
Raphson (N-R) method fails to converge.

Initializing DC/Operating Point Analysis: Accuracy and Convergence
9-31

Notes:
1. Setting .OPTION DCON = -1 disables steps 2 and 3.

2. Setting .OPTION CONVERGE = -1 disables steps 4 and 5.

3. Setting .OPTION DCON = -1 CONVERGE = -1 disables steps 2,
3,4, and 5.

4. If you set the DV option to a value other than the default, step 2
uses the value you set for DV, but step 3 changes DV to 1e6.

5. Setting GRAMP in an .OPTION statement has no effect on
autoconverge. Autoconverge sets GRAMP independently.

6. If you set a GMINDC value in an .OPTION statement, GMINDC
ramps to the value you set, instead of to 1e-12, in steps 2 and 3.

DCON and GMINDC

GMINDC helps stabilize the circuit, during DC operating-point
analysis. For MOSFETs, GMINDC helps stabilize the device, in the
vicinity of the threshold region. HSPICE inserts GMINDC between:

e Drain and bulk.

» Source and bulk.

« Drain and source.

The drain-to-source GMINDC helps to:

* Linearize the transition, from cutoff to weakly-on.

* Smooth-out model discontinuities.

 Compensate for the effects of negative conductances.

The pn junction insertion of GMINDC, in junction diodes, linearizes
the low conductance region. As a result, the device behaves like a
resistor in the low-conductance region. This prevents the occurrence
of zero conductance, and improves the convergence of the circuit.

Initializing DC/Operating Point Analysis: Accuracy and Convergence
9-32

Figure 9-3 Autoconvergence Process Flow Diagram

< STEP 1
Iterate
Y
Converged? Results
N STEP 2
Sets DCON = 1.
Try DCON = 1 If DV = 1000, sets DV from 1000 to max(0.1. Vmax/50).
Sets GRAMP = (Imax/GMINDC).
Ramps GMINDC, from GMINDC0CRAMP g 1e-12.
Y
Converged? Results
STEP 3
N Sets DCON = 2.
Trv DCON = 2 Relaxes DV to 1e6.
ry - Sets GRAMP = (Imax/GMINDC).

Ramps GMINDC, from GMINDC0CRAMP g 1e-12.

Y
Converged? >___, Results

STEP 4
N Adds CSHDC and GSHUNT, from each node, to ground.
Try CONVERGE = < Ramps supplies, from zero to the set values.
Removes CSHDC and GSHUNT, after DC convergence. Also

iterates further, to a stable DC-bias point.

Y
Converged? >, Results

STEP 5
N Adds CSHDC, from each node, to ground.

Try CONVERGE = A< Ramps gmath=cshdc/delta in the range of 1.0e-12 to 10.0.
Set gmath to zero, if convergence occurs with gmath under
1.0e-12, and iterates further to a stable DC bias point.

Y
Converged? Results
N

Non-convergence report

If a circuit does not converge, HSPICE automatically sets the DCON
option. This option invokes GMINDC ramping, in steps 2 and 3 of

Figure 9-3 on page 9-33. Figure 9-4 shows GMINDC, for various
elements.

Initializing DC/Operating Point Analysis: Accuracy and Convergence

9-33

Figure 9-4 GMINDC Insertion

Initializing DC/Operating Point Analysis: Accuracy and Convergence

9-34

GMINDC

®
GMIND%

GMIND

— %—T GMINDC

GMINDC

Y

GMINDC

L]

GMINDC

Diode element

BJT element

MOSFET element

JFET or MESFET
element

Reducing DC Errors

To reduce DC errors, perform the following steps:

To check topology, set .OPTION NODE, to list nodal cross-
references.

1.

Do all MOS p-channel substrates connect to either VCC or
positive supplies?

Do all MOS n-channel substrates connect to either GND or
negative supplies?

Do all vertical NPN substrates connect to either GND or
negative supplies?

Do all lateral PNP substrates connect to negative supplies?

Do all latches have either an OFF transistor, a .NODESET, or
an .IC, on one side?

Do all series capacitors have a parallel resistance, or
is .OPTION DCSTEP set?

Check your .MODEL statements.

Check all model parameter units. Use model printouts to verify
actual values and units, because HSPICE multiplies some
model parameters by scaling options.

Are sub-threshold parameters of MOS models, set with
reasonable value (such as NFS = 1ell for SPICE 1, 2, and 3
models, or NO = 1.0 for True-Hspice BSIM1, BSIM2, and Level
28 device models)?

Avoid setting UTRA in MOS Level 2 models.

Are JS and JSW set in the MOS model, for the DC portion of a
diode model? A typical JS value is 1le-4A/M2.

Are CJ and CJSW set, in MOS diode models?
Is weak-inversion NG and ND set in JFET/MESFET models?

Initializing DC/Operating Point Analysis: Reducing DC Errors
9-35

- If you use the MOS Level 6 LGAMMA equation, is

UPDATE=1?

- Make sure that DIODE models have non-zero values, for

saturation current, junction capacitance, and series resistance.

- Use MOS ACM =1, ACM =2, or ACM = 3 source and drain

diode calculations, to automatically generate parasitics.

General remarks:

Ideal current sources require large values of .OPTION
GRAMP, especially for BJT and MESFET circuits. Such
circuits do not ramp up with the supply voltages, and can force
reverse-bias conditions, leading to excessive nodal voltages.

Schmitt triggers are unpredictable for DC sweep, and
sometimes for operating points, for the same reasons that
oscillators and flip-flops are unpredictable. Use slow transient.

Large circuits tend to have more convergence problems,
because they have a higher probability of uncovering a
modeling problem.

Circuits that converge individually, but fail when combined, are
almost guaranteed to have a modeling problem.

Open-loop op-amps have high gain, which can lead to
difficulties in converging. Start op-amps in unity-gain
configuration, and open them up in transient analysis, using a
voltage-variable resistor, or a resistor with a large AC value (for
AC analysis).

Check your options:

- Remove all convergence-related options, and try first with no

special options settings.

- Check non-convergence diagnostic tables, for non-convergent

nodes. Look up non-convergent nodes in the circuit schematic.
They are usually latches, Schmitt triggers, or oscillating nodes.

Initializing DC/Operating Point Analysis: Reducing DC Errors

9-36

- For stubborn convergence failures, bypass DC all together,
and use .TRAN with UIC set. Continue transient analysis until
transients settle out, then specify the .OP time, to obtain an
operating point during the transient analysis. To specify an AC
analysis during the transient analysis, add an .AC statement to
the .OP time statement.

- SCALE and SCALM scaling options have a significant effect
on parameter values in both elements and models. Be careful
with units.

Shorted Element Nodes

HSPICE disregards any capacitor, resistor, inductor, diode, BJT, or
MOSFET, if all of its leads connect together. Simulation does not
count the component in its component tally, and issues a warning:

** warning **
all nodes of elenent x:<nane> are connected together

Inserting Conductance, Using DCSTEP

In a DC operating-point analysis, failure to include conductances in
a capacitor model results in broken circuit loops (because a DC
analysis opens all capacitors). This might not be solvable. If you
include a small conductance in the capacitor model, the circuit loops
are complete, and HSPICE can solve them.

Modeling capacitors as complete opens, can result in this error:
“No DC Path to G ound”

ForaDC analysis, use .OPTION DCSTEP, to assign a conductance
value to all capacitors in the circuit. DCSTEP calculates the value as:

conduct ance = capacit ance/ DCSTEP

Initializing DC/Operating Point Analysis: Reducing DC Errors
9-37

In Figure 9-5 on page 9-38, HSPICE inserts conductance (G), in
parallel with capacitance (Cg). This provides current paths around

capacitances, in DC analysis.

Figure 9-5 Conductance Insertion

Cg
original circuit |
Cg |
|
|
G
p
after conductance G |
insertion C |
L
G

[|
|
L«/\N—«
s G = Cg/DCSTEP

Floating-Point Overflow

If MOS conductance is negative or zero, HSPICE might have
difficulty converging. An indication of this type of problem is a
floating-point overflow, during matrix solutions. HSPICE detects
floating-point overflow, and invokes the Damped Pseudo Transient
algorithm (CONVERGE = 1), to try to achieve DC convergence
without requiring you to intervene. If GMINDC is 1.0e-12 or less
when a floating-point overflows, HSPICE sets it to 1.0e-11.

Initializing DC/Operating Point Analysis: Reducing DC Errors
9-38

Diagnosing Convergence Problems

Before simulation, HSPICE diagnoses potential convergence
problems in the input circuit, and provides an early warning, to help
you in debugging your circuit. If HSPICE detects a circuit condition
that might cause convergence problems, it prints the following
message into the output file:

“War ni ng: Zero di agonal val ue detected at node () i nequation
sol ver, which m ght cause convergence problens. If your

simulation fails, try adding a | arge resi stor between node
() and ground.”

Non-Convergence Diagnostic Table

If a circuit cannot converge, HSPICE automatically generates two
printouts, called the diagnostic tables:

» Nodal voltage printout. Prints the names of all no-convergent
node voltages, and the associated voltage error tolerances (tol).

« Element printout, which lists all non-convergent elements, and
their associated element currents, element voltages, model
parameters, and current error tolerances (tol).

1. To locate the branch current or nodal voltage that causes non-
convergence, analyze the diagnostic tables. Look for unusually
large values of branch currents, nodal voltages or tolerances.

2. Afteryou locate the cause, use the .NODESET or .IC statements,
to initialize the node or branch.

If circuit simulation does not converge, HSPICE automatically
generates a non-convergence diagnostic table, indicating:

- The quantity of recorded voltage failures.
- The quantity of recorded branch element failures.

Any node in a circuit can create voltage failures, including hidden
nodes (such as extra nodes that parasitic resistors create).

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-39

3. Check the element printout for the sub-circuit, model, and
element name, for all parts of the circuit where node voltages or
currents do not converge.

For example, Table 9-14 identifies the xinv21, xinv22, xinv23, and
xinv24 inverters, as problem sub-circuits in a ring oscillator. It also
indicates that the p-channel transistors, in the xinv21, xinv22, xinv24
sub-circuits, are nonconvergent elements. The n-channel transistor
of xinv23 is also a nonconvergent element.

The table lists voltages and currents for the transistors, so you can
check whether they have reasonable values. The tolds, tolbd, and
tolbs error tolerances indicate how close the element currents (drain
to source, bulk to drain, and bulk to source) are, to a convergent
solution. For tol variables, a value close to or below 1.0 is a
convergent solution. In Table 9-14, the tol values that are around
100, indicate that the currents were far from convergence. The
element current and voltage values are also shown (id, ibs, ibd, vgs,
vds, and vbs). Examine whether these values are realistic, and
determine the transistor regions of operation.

Table 9-14 Subcircuit Voltage, Current, and Tolerance

subckt xinv21 xinv22 xinv23 xinv23 xinv24
element | 21:mphcl 22:mphcl 23:mphcl 23:mnch1l 24: mphcl
model O:pl O:pl O:pl 0:nl O:pl

id 27.5809f 140.5646u 1.8123p 1.7017m 5.5132u

ibs 205.9804f 3.1881f 31.2989f 0. 200.0000f
ibd 0. 0. 0. -168.7011f | O.

vgs 4.9994 -4.9992 69.9223 4.9998 -67.8955
vds 4.9994 206.6633u 69.9225 -64.9225 2.0269

vbs 4.9994 206.6633u 69.9225 0. 2.0269

vth -653.8030m | -745.5860m | -732.8632m | 549.4114m | -656.5097m

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems

9-40

Table 9-14 Subcircuit Voltage, Current, and Tolerance (Continued)

subckt xinv21 Xinv22 xinv23 xinv23 xinv24
element | 21:mphcl 22:mphcl 23:mphcl 23:mnch1l 24: mphcl
model 0:p1 0:p1 0:p1 0:nl 0:p1

tolds 114.8609 82.5624 155.9508 104.5004 5.3653
tolbd 0. 0. 0. 0. 0.

tolbs 3.534e-19 107.1528m | 0. 0. 0.

Traceback of Non-Convergence Source

To locate a non-convergence source, trace the circuit path, for error
tolerance. For example, in an inverter chain, the last inverter can
have a very high error tolerance. If this is the case, examine the error
tolerance of the elements that drive the inverter. If the driving
tolerance is high, the driving element could be the source of non-
convergence. However, if the tolerance is low, check the driven
element as the source of non-convergence.

Examine the voltages and current levels of a non-convergent
MOSFET to discover the operating region of the MOSFET. This
information can flow to the location of the discontinuity in the
model—for example, subthreshold-to-linear, or linear-to-saturation.

When considering error tolerances, check the current and nodal
voltage values. If these values are extremely low, a relatively large
number is divided by a very small number. This produces a large
calculation result, which can cause the non-convergence errors. To
solve this, increase the value of the absolute-accuracy options.

Use the diagnostic table, with the DC iteration limit (ITL1 statement),
to find the sources of non-convergence. When you increase or
decrease ITL1, HSPICE prints output for the problem nodes and
elements, for a new iteration—that is, the last iteration of the analysis
that you set in ITL1.

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-41

Solutions for Non-Convergent Circuits
Non-convergent circuits generally result from:

« Poor Initial Conditions

* Inappropriate Model Parameters

e« PN Junctions (Diodes, MOSFETs, BJTs)

The following sections explain these conditions.

Poor Initial Conditions

Multi-stable circuits need state information, to guide the DC solution.
You must initialize ring oscillators and flip-flops. These multi-stable
circuits can either produce an intermediate forbidden state, or cause
a DC convergence problem. To initialize a circuit, use the .IC
statement, which forces a node to the requested voltage. Ring
oscillators usually require you to set only one stage.

Figure 9-6 Ring Oscillator

IC V(1)=5V

N

The best way to set up the flip-flop is to use an .IC statement in the
subcircuit definition.

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-42

EXAMPLE:

The following example sets the local Qset parameter to 0, and uses
this value for the .IC statement, to initialize the Q latch output node.
As a result, all latches have a default state of Q low. Setting Qset to
vdd calls a latch, which overrides this state.

.subckt latch in QQ d et =0

.i1c Q= (et

_ends

.Xff data_in[1] out[1] out[1l]/ strobe LATCH (set = vdd

Inappropriate Model Parameters

If you impose non-physical model parameters, you might create a
discontinuous IDS or capacitance model. This can cause an internal
timestep too small error, during the transient simulation. The
mosivcv.sp demonstration file shows IDS, VGS, GM, GDS, GMB,
and CV plots, for MOS devices. A sweep near threshold, from Vth-
0.5V to Vth+0.5 V (using a delta of 0.01 V), sometimes discloses a
possible discontinuity in the curves.

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-43

Figure 9-7 Discontinuous I-V Characteristics

lds o I-V characteristics exhibiting
saturation conductance = zero
4
Vds
lds o I-V exhibiting VDSAT slope error
Vds
lds o I-V exhibiting negative resistance region
Vds

If the simulation no longer converges, when you add a component or
change a component value, then the model parameters are

inappropriate, or do not correspond to the physical values that they
represent.

1. Check the input netlist file, for non-convergent elements.
Devices with a TOL value greater than 1, are non-convergent.

2. Find the devices, at the beginning of the combined-logic string of
gates, that seem to start the non-convergent string.

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-44

3. Check the operating point of these devices very closely, to see
what region they operate in.

Model parameters associated with this region are probably
inappropriate.

Circuit simulation uses single-transistor characterization, to simulate
a large collection of devices. If a circuit fails to converge, the cause
can be a single transistor, anywhere in the circuit.

PN Junctions (Diodes, MOSFETSs, BJTs)

PN junctions found in diode, BJT, and MOSFET models, might
exhibit non-convergent behavior, in both DC and transient analysis.

EXAMPLE:

PN junctions often have a high off resistance, resulting in anill-
conditioned matrix. To overcome this, the GMINDC and GMIN
options automatically parallel every PN junction in a design, with a
conductance.

Non-convergence can occur if you overdrive the PN junction. This
happens if you omit a current-limiting resistor, or if the resistor has a
very small value. In transient analysis, protection diodes are often
temporarily forward-biased (due to the inductive switching effect).
This overdrives the diode, and can result in non-convergence, if you
omit a current-limiting resistor.

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-45

Initializing DC/Operating Point Analysis: Diagnosing Convergence Problems
9-46

10

Transient Analysis

Transient analysis computes the circuit solution, as a function of
time, over a time range specified in the . TRAN statement.

This chapter explains the following topics:
e Simulation Flow

* Overview of Transient Analysis
 Using the .TRAN Statement

« Transient Analysis of an RC Network
* Transient Analysis of an Inverter
 Using the .BIASCHK Statement

« Transient Control Options
 Simulation Speed and Accuracy

* Numerical Integration Algorithm Controls
e Selecting Timestep Control Algorithms

* Fourier Analysis

10-1

Simulation Flow

Figure 10-1 illustrates the simulation flow, for transient analysis in
Synopsys HSPICE.

Figure 10-1 Transient Analysis Simulation Flow

Simulation Experiment

Y
Y Y Y

DC Transient AC
|
uiC Four FFT Time-sweep
simulation
_ DA HSPICE only Y
Options:
Method Tolerance Limit
BYPASS ABSV = x RELQ = x AUTOSTOP IMAX =X
CSHUNT ABSVAR = x RELTOL BKPSIZ IMIN = x
DVDT ACCURATE RELV = x DVTR = x ITL3 = X
GSHUNT BYTOL = x RELVAR = x ES = x ITL4 = X
LVLTIM = x CHGTOL =x SLOPETOL =x FT = x ITL5 = x
MAXORD =x DELMAX=x TIMERES GMIN = x RMAX = x
METHOD FAST TRTOL = x RMIN = x
MBYPASS VNTOL VFLOOR

MU

Overview of Transient Analysis

Transient analysis simulates a circuit at a specific time. Some of its
algorithms, control options, convergence-related issues, and
initialization parameters are different than those used in DC analysis.

Transient Analysis: Simulation Flow
10-2

However, a transient analysis first performs a DC operating point
analysis, unless you specify the UIC option in the .TRAN statement.
Therefore, most DC analysis algorithms, control options,
Initialization issues, and convergence issues, also apply to transient
analysis.

Unless you set the initial circuit operating conditions, some circuits
(such as oscillators, or circuits with feedback) do not have stable
operating point solutions. For these circuits, either:

» Break the feedback loop, to calculate a stable DC operating
point, or

« Specify the initial conditions, in the simulation input.

If you include the UIC parameter in the .TRAN statement, HSPICE
bypasses the DC operating point analysis. Instead, it uses node
voltages, specified in an .IC statement, to start a transient analysis.
For example, if a .IC statement sets a node to 5 V in, the value at that
node for the first time point (time 0) is 5 V.

You can use the .OP statement to store an estimate of the DC
operating point, during a transient analysis.

EXAMPLE:

In the following example, the UIC parameter (in the .TRAN
statement) bypasses the initial DC operating point analysis. The .OP
statement calculates the transient operating point (att = 20 ns),
during the transient analysis.

. TRAN 1ns 100ns U C
. OP 20ns

Transient Analysis: Overview of Transient Analysis
10-3

Although a transient analysis might provide a convergent DC
solution, the transient analysis can still fail to converge. In a transient
analysis, the internal timestep too small error message indicates that
the circuit failed to converge. The cause of this convergence failure
might be that stated initial conditions are not close enough to the
actual DC operating point values. Use the commands in this chapter
to help achieve convergence in a transient analysis.

Using the .TRAN Statement

SYNTAX:

Single-Point Analysis

.TRAN tincrl tstopl <tincr2 tstop2 ...tincrN tstopN>
+ <START = val > <U C

Double-Point Analysis

.TRAN tincrl tstopl <tincr2 tstop2 ...tincrN tstopN>
+ <START = val > <U C
+ <SWEEP var type np pstart pstop>

.TRAN tincrl tstopl <tincr2 tstop2 ...tincrN tstopN>
+ <START = val > <Ul C <SWEEP var START="param expr 1"
+ STOP="par am expr 2"

+ STEP="param expr 3" >

.TRAN tincrl tstopl <tincr2 tstop2 ... tincrN tstopN>
+ <START=val > <U C <SWEEP var start_expr stop_expr
+ step_expr>

Data-Driven Sweep

HSPICE supports the following types of data-driven sweep syntax:

. TRAN DATA = dat anm

.TRAN tincrl tstopl <tincr2 tstop2 ...tincrN tstopN>
+ <START = val > <U C <SWEEP DATA = dat ann»

Transient Analysis: Using the .TRAN Statement

10-4

. TRAN DATA = dat annxSWEEP var type np pstart pstop>

. TRAN DATA=dat anm <SWEEP var START="param expr 1"
+STOP="par am expr 2" STEP="param expr 3" >

. TRAN DATA=dat anm <SWEEP var start_expr stop_expr step_expr>

Monte Carlo Analysis

HSPICE supports this Monte Carlo syntax for transient analysis.

.TRAN tincrl tstopl <tincr2 tstop2 ...tincrN tstopN>
+ <START = val > <Ul C<SWEEP MONTE = val >

Optimization

HSPICE supports this Optimization syntax for transient analysis.

. TRAN DATA = dat anm OPTI M ZE = opt _par_fun
+ RESULTS = neasnanes MODEL = opt nod

. TRAN <DATA=fi | enanme> SWEEP OPTI M ZE=OPTxXXx
+ RESULTS=ierrl ... ierrn MODEL=opt nod

.TRAN Keywords and Parameters

Transient sweep specifications can include these keywords and
parameters:

Table 10-1 Keywords and Parameters in a Transient Sweep

Parameter

Description

DATA = datanm

Data name, referenced in the .TRAN statement.

MONTE = val Produces a specified number (val) of randomly-generated values. HSPICE
uses them to select parameters from a Gaussian, Uniform, or Random Limit.

np Number of points, or number of points per decade or octave, depending on
what keyword precedes it.

param_expr... Expressions you specify: param_exprl...param_exprN.

pincr Voltage, current, element, or model parameter; or any temperature increment

value. If you set the type variation, use np (number of points), not pincr.

Transient Analysis: Using the .TRAN Statement
10-5

Table 10-1 Keywords and Parameters in a Transient Sweep (Continued)

Parameter

Description

pstart

Starting voltage, current, or temperature; or any element or model parameter
value. If you set the type variation to POI (list of points), use a list of parameter
values, instead of pstart pstop.

pstop

Final voltage, current, or temperature; or element or model parameter value.

START

Time when printing or plotting begins. The START keyword is optional: you can
specify a start time without the keyword.

If you use .TRAN with .MEASURE, a non-zero START time can cause
incorrect .MEASURE results. Do not use non-zero START times in .TRAN
statements, when you also use .MEASURE.

SWEEP

Keyword. Indicates that . TRAN specifies a second sweep.

tincrl...

Specifies the printing or plotting increment for printer output, and the suggested
computing increment for post-processing.

tstopl...

Time when a transient analysis stops incrementing by the first specified time
increment (tincrl). If another tincr-tstop pair follows, analysis continues with a
new increment.

uic

Uses the nodal voltages specified in the .IC statement (or in the IC =
parameters of the various element statements) to calculate initial transient
conditions, rather than solving for the quiescent operating point.

type

Specifies any of the following keywords:

» DEC - decade variation.

» OCT - octave variation (the value of the designated variable is eight times
its previous value).

e LIN — linear variation.

» POI - list of points.

var

Name of an independent voltage or current source, any element or model
parameter, or the TEMP keyword (indicating a temperature sweep). You can
use a source value sweep, referring to the source name (SPICE style).
However, if you specify a parameter sweep, a .DATA statement, and a
temperature sweep, you must choose a parameter name for the source value,
and subsequently refer to itin the .TRAN statement. The parameter name must
not start with V or I.

Transient Analysis:
10-6

Using the .TRAN Statement

.TRAN Examples

1.

The following example performs and prints the transient analysis,
every 1 ns, for 100 ns.

. TRAN 1INS 100NS

The following example performs the calculation every 0.1 ns, for
the first 25 ns; and then every 1 ns, until 40 ns. Printing and
plotting begin at 10 ns.

. TRAN . INS 25NS 1INS 40NS START = 10NS

The following example performs the calculation every 10 ns, for
1 ps. This example bypasses the initial DC operating point
calculation. It uses the nodal voltages, specified in the .IC
statement (or by IC parameters in element statements), to
calculate the initial conditions.

. TRAN 10NS 1US U C

The following example increases the temperature by 10 °C,
through the range -55 °C to 75 °C. It also performs transient
analysis, for each temperature.

. TRAN 10NS 1US U C SWEEP TEMP -55 75 10

The following example analyzes each load parameter value, at 1
pF, 5 pF, and 10 pF.

. TRAN 10NS 1US SWEEP | oad PO 3 1pf 5pf 10pf

The following example is a data-driven time sweep. It uses a data
file as the sweep input. If the parameters in the data statement

are controlling sources, then a piecewise linear specification
must reference them.

. TRAN data = dat anane

Transient Analysis: Using the .TRAN Statement
10-7

Table 10-2

.TRAN Options

Option Description

BYPASS Bypasses model evaluations for MOSFETSs, if terminal voltages do not
change. Can be 0 (off) or 1 (on, default).

CSHUNT Capacitance, added from each node to ground. Add a small CSHUNT
to each node, to solve some internal timestep too small problems,
caused by high-frequency oscillations or numerical noise. Default is 0.

AUTOSTOP If on, .TRAN simulation stops when it finds all . MEASURE results. Can
be 0 (off) or 1 (on). Default is O.

GMIN Minimum conductance added to all PN junctions, for a time sweep in

transient analysis. Default = 1e-12.

.TRAN Output Syntax

.print tran ovl [ov2 ... ovN]
. probe tran ovl [ov2 ... ovN]
. measure tran neasspec

.plot tran ovl [ov2 ... oVvN|
.graph tran ovl [ov2 ... ovN|

The ovl, ... ovN output variables can include the following:

V(n): voltage at node n.

V(n1,n2): voltage between the nl and n2 nodes.
Vn(dl): voltage at nth terminal of the d1 device.
In(d1): current into nth terminal of the d1 device.

‘expression’: expression, involving the plot variables above

You can use wildcards (* or as specified in .admrc) to specify multiple
output variables in a single command. Output is affected by
.OPTION post, .OPTION probe

Transient Analysis: Using the .TRAN Statement

10-8

Table 10-3 .TRAN Output Format/Description

Parameter | Description

*.print Writes the output from the .PRINT statement to a *.print file. HSPICE does not
generate a *.print# file.

* The header line contains column labels.

* The first column is time.

» The remaining columns represent the output variables specified with .PRINT.
* Rows that follow the header contain the data values for simulated time points.

* trit Writes output from the .PROBE, .PRINT, .PLOT, .GRAPH, or MEASURE
statement to a *.tr# file.

Transient Analysis of an RC Network

You can run a transient analysis, using an RC network, with a pulse
source, a DC source, and an AC source.

1. Type the following netlist into a file named quickTRAN.sp.

A SI MPLE TRANSI ENT RUN
. OPTI ON LI ST NCDE PCST
.OP
. TRAN 10N 2U
.PRINT TRAN V(1) V(2) I(R2) I(CL)
V110 10 AC1 PULSE 0 5 10N 20N 20N 500N 2U
RL 1 2 1K
R2 2 0 1K
Cl 2 0 .001U
. END
Note: The V1 source specification includes a pulse source. For the
syntax of pulse sources and other types of sources, see

Sources and Stimuli on page 5-1.

2. To run HSPICE, type the following:
hspi ce qui ckTRAN. sp > qui ckTRAN. i s

3. To examine the simulation results and status, use an editor and
view the .lis and .stO files.

4. Run AvanWaves and open the .sp file.

Transient Analysis: Transient Analysis of an RC Network
10-9

5. To view the waveform, select the quickTRAN.trO file from the
Results Browser window.

6. Display the voltage at nodes 1 and 2 on the x-axis.

Figure 10-2 on page 10-10 shows the waveforms.

Figure 10-2 Voltages at RC Network Circuit Node 1 and Node 2

a simple transient run

5'0_ . . . ; p qulc
b= . . i - ' ' . - ' -~ 1
‘.—_—-
- o 2
v 4.0 o—t
-]
1 L)
t 3.0:.....-7.-. o N . ,._ . - - - o ..:.......:.._.__..:.._ _..:_.._.____.
1 C '
1 C -y
n 2.0

i NI B ol 1 . | ——r——
O e e A0, O BO0U.On ADO,On 1,04 1.200 1.40u 1.600 1.B0u
Q. time {lin} Z.0u

F——

Transient Analysis of an Inverter

As a final example, analyze the behavior of the simple MOS inverter
shown in Figure 10-3.

Figure 10-3 MOS Inverter Circuit

vCce
vVCC M1
= IN —1 ouT
— _L cLoAD
VIN —
1 [0.75pF
M2

Transient Analysis: Transient Analysis of an Inverter
10-10

1. Type the following netlist data into a file named quickINV.sp.

Inverter Circuit

. OPTI ON LI ST NODE POST

. TRAN 200P 20N

. PRINT TRAN V(I N) V(QUT)

ML QUT IN VCC VCC PCH L = 1U W= 20U
M QUT INO O NCHL = 1U W= 20U

VCC VCC 0 5

VININO O PULSE .2 4.8 2N 1N 1N 5N 20N
CLOAD QUT 0 . 75P

. MODEL PCH PMOS LEVEL
. MODEL NCH NMOS LEVEL
. END

1
1

2. To run HSPICE, type the following:
hspi ce qui ckl NV.sp > quickINV.lis

3. Use AvanWaves to examine the voltage waveforms, at the
inverter IN and OUT nodes.

Figure 10-4 shows the waveforms.

Figure 10-4 Voltage at MOS Inverter Node 1 and Node 2

Transient Analysis: Transient Analysis of an Inverter
10-11

Using the .BIASCHK Statement

Breakdown can occur if a voltage bias between some terminals of an
element is too large. The .BIASCHK statement monitors the voltage
bias, using the limits and noise that you define. Bias monitoring
checks the specified bias, during transient analysis, and reports:

 Element name

« Time

« Terminals

» Bias that exceeds the limit

« Number of times the bias exceeds the limit for an element

HSPICE saves the information as both a warning and a BIASCHK
summary, in the *.lis file.

You can use this command only for MOS and capacitors.

EXAMPLE:

A .BIASCHK statement might check for voltages that exceed a
specified limit, for MOS dielectric breakdown. BIASCHK can check
voltages from the gate, to the source, drain, or bulk.

BIASCHK cannot detect the bias that exceeds the limit, if the bias is
always the same value during transient analysis.

If a model name, referenced in an active element statement,
contains a period (.), then .BIASCHK reports an error. This occurs
because it is unclear whether a reference such as x.123 is a model
name or a sub-circuit name (123 model in the x sub-circuit).

Instance (element) and model names can contain wildcards, either ?
(stands for one character) or * (stands for O or more characters).

Transient Analysis: Using the .BIASCHK Statement

10-12

SYNTAX:

.biaschk type terminall=tl terminal2=t2 limt=lim
+ <noi se=ns><nanme=devnanel><name=devnane2>. ..
+ <mane=nodel nanel><mane=nodel name2> ...

Table 10-4 .BIASCHK Syntax

Parameter

Description

type

Element type to check
MOS (R, C..)
The type can be NMOS, PMOS, or C.

terminal 1, 2

Terminals, between which HSPICE checks (that is, checks between terminall
and terminal2):

* For MOS level 57: nd, ng, ns, ne, np, n6
* For MOS level 58: nd, ngf, ns, ngh

» For MOS level 59: nd, ng, ns, ne, np

» For other MOS level: nd, ng, ns, nb

» For Capacitor: nl1, n2

limit

Biaschk limit that you define. Reports an error, if the bias voltage (between
appointed terminals, of appointed elements and models), is larger than the limit.

noise

Biaschk noise that you define. The default is 0.1v.

Noise-filter some of the results (the local maximum bias voltage, that is larger
than the limit).

The next local max replaces the local max, if all of the following conditions are
satisfied:

local_max-local_min<noise>.
next local_max-local_min<noise>.

This local max is smaller than the next local max.

name

Element name to check.

mname

Model name. HSPICE checks elements of the model for bias.

If you do not set name and mname, HSPICE checks all elements of
this type for bias voltage (you must include type in the .biaschk card).

You can use a wild card, to describe name and mname, in the
biaschk card.

? stands for one character.

* stands for O or more characters.

Transient Analysis: Using the .BIASCHK Statement
10-13

EXAMPLE:

. biaschk NMOS termi nal 1=ng term nal 2=nb |imt=2v
+ noi se=0. 01lv nane=x1l. x3. nml mane=nch. 1 nane=nB

Options for the .biaschk Command

biasfile Option

If you use this option, HSPICE outputs the results of all .biaschk
commands to a file that you specify.

If you do not set this option, HSPICE outputs the results to the
* lis file.

EXAMPLE:

.option biasfile=" biaschk/nos. bi as’

biawarn Option

If you set this option to 1, HSPICE immediately outputs a warning
message, when any local max bias voltage exceeds the limit
during transient analysis. After this transient analysis, HSPICE
outputs the results summary, as filtered by noise.

If you set this option to O (the default), HSPICE does not output
a warning message during transient analysis. HSPICE outputs
the results, after this transient analysis.

EXAMPLE:

.option biawarn=1

Transient Analysis: Using the .BIASCHK Statement

10-14

Transient Control Options

Method, tolerance, and limit options in this section modify the
behavior of transient analysis integration routines. Delta is the
internal timestep. TSTEP and TSTOP are the step and stop values
in the .TRAN statement.:

Table 10-5 Transient Control Options, Arranged by Category

Method Tolerance Limit
BYPASS ABSH RELQ AUTOSTOP ITL3
CSHUNT ABSV RELTOL BKPSIZ ITL4
DVDT ABSVAR RELV DELMAX ITL5
GSHUNT ACCURATE RELVAR DVTR RMAX
INTERP BYTOL SLOPETOL FS RMIN
ITRPRT CHGTOL TIMERES FT VFLOOR
LVLTIM DI TRTOL GMIN
MAXORD FAST VNTOL
METHOD MBYPASS
PURETP MAXAMP

MU
TRCON RELH

RELI

Table 10-6 Method Options (Sheet 1 of 4)

Option

Description

BYPASS

Bypasses model evaluations, if the terminal voltages do not change. Can be
0 (off) or 1 (on). To speed-up simulation, this option does not update the
status of latent devices. To enable bypassing, set .OPTION BYPASS = 1, for
MOSFETs, MESFETs, JFETs, BJTs, or diodes. Default = 1.

Use the BYPASS algorithm cautiously. Some circuits might not converge and
might lose accuracy in transient analysis and operating-point calculations.

CSHUNT

Capacitance added from a node to ground in HSPICE. Add a small CSHUNT
to each node, to solve internal timestep too small problems caused by high-
frequency oscillations or numerical noise. Default=0.

GSHUNT

Conductance added from each node, to ground. Default is zero. Add a small
GSHUNT value to each node, to help solve internal timestep too small
problems, caused by high-frequency oscillations or numerical noise.

Transient Analysis: Transient Control Options
10-15

Table 10-6 Method Options (Sheet 2 of 4)

Option

Description

DVDT

Adjusts the timestep, based on rates of change for node voltages.:
0 - original algorithm.

1 - fast.

2 - accurate.

3,4 - balance speed and accuracy. Default is 4.

INTERP

Limits output for post-analysis tools, such as Cadence or Zuken, to only
the .TRAN timestep intervals. By default, HSPICE outputs all convergent
iterations. INTERP typically produces a much smaller design.tr# file.

Use INTERP = 1 with caution, when the netlist includes

.MEASURE statements. To compute measure statements, HSPICE uses the
post-processing output. Reducing post-processing output can lead to
interpolation errors, in measure results.

When you run data-driven transient analysis ((TRAN DATA) in an optimization
routine, HSPICE forces INTERP to 1. All measurement results are at the time
points specified in the data-driven sweep. To measure only at converged
internal timesteps (for example, to calculate the AVG or RMS), set

ITRPRT = 1.

ITRPRT

Prints output variables. at their internal time points. This option might
generate a long output list.

LVLTIM = x

Selects the timestep algorithm, for transient analysis.

e LVLTIM =1 DVDT timestep algorithm.

* LVLTIM = 2 timestep algorithm for local truncation error.

 LVLTIM = 3 DVDT timestep algorithm, with timestep reversal.

To use the GEAR method of numerical integration and linearization, select
LVLTIM = 2.

To use the TRAP linearization algorithm, select LVLTIM 1 or 3. LVLTIM =1
(DVDT option) is the default, and helps avoid internal timestep too small non-
convergence.

The local truncation algorithm (LVLTIM = 2) is more accurate than the TRAP
method. If you use this option, errors do not propagate from time point to time
point, which can result in an unstable solution.

MAXORD = x

Maximum order of integration, for the GEAR method (see METHOD). The value
of x can be 1 or 2.

* MAXORD = 1 uses the backward Euler integration method.
« MAXORD = 2 (default) is more stable, accurate, and practical.

Transient Analysis: Transient Control Options

10-16

Table 10-6

Method Options (Sheet 3 of 4)

Option

Description

METHOD =
name

Sets the numerical integration method, for a transient analysis, to either
GEAR or TRAP.

* To use GEAR, set METHOD = GEAR, which sets LVLTIM = 2.

» To change LVLTIM from 2, to either 1 or 3, set LVLTIM = 1 or 3, after the
METHOD = GEAR option. This overrides METHOD=GEAR, which sets
LVLTIM = 2.

TRAP (trapezoidal) integration usually reduces program execution time, with

more accurate results. However, this method can introduce an apparent

oscillation on printed or plotted nodes, which might not be caused by circuit
behavior. To test this, run a transient analysis, using a small timestep. If the
oscillation disappears, the cause was the trapezoidal method.

The GEAR method is a filter, removing oscillations that occur in the

trapezoidal method. Highly non-linear circuits (such as operational amplifiers)

can require long execution times if you use the GEAR method. Circuits that
do not converge in trapezoidal integration, often converge if you use GEAR.

Default = TRAP (trapezoidal).

PURETP

Sets the integration method to use, for the reversal time point. Default is 0. If
you set puretp=1, then if HSPICE encounters non-convergence, it uses
TRAP (instead of B.E) for the reversed time point.

Use this option to help some oscillating circuits to oscillate, if the default
simulation process cannot satisfy the result.

Use this option with the method=TRAP statement.

TRCON

Controls the automatic convergence (autoconvergence) and automatic
speedup (autospeedup) processes in HSPICE.

HSPICE also uses autoconvergence in DC analysis, if the Newton-Raphson
(N-R) method fails to converge.

« TRCON=1 (the default) enables both autoconvergence and autospeedup.
« TRCON= 0 enables autospeedup only.
« TRCON =-1 disables both autoconvergence and autospeedup.

Aoutoconvergence

If the circuit fails to converge using the trapezoidal (TRAP) numerical
integration method (for example, because of trapezoidal oscillation), HSPICE
uses the GEAR method and LTE timestep algorithm, to run the transient
analysis again from time=0. This process is called autoconvergence.

Transient Analysis: Transient Control Options
10-17

Table 10-6 Method Options (Sheet 4 of 4)

Option

Description

Autoconvergence sets the following options to their default values before the
second try:

METHOD=GEAR, LVLTIM=2, MBYPASS=1.0, BYPASS=0.0,
SLOPETOL=0.5
BYTOL= min{mbypas*vntol and reltol}

RMAX=2.0 if it was 5.0 in the first run. Otherwise, RMAX does not change.

For some large non-linear circuits with large TSTOP/TSTEP values, analysis
might run for an excessively long time. In this case, HSPICE might
automatically set a new and bigger RMAX value, to speed up the analysis for
primary reference. In most cases, however, HSPICE does not activate this
type of autospeedup process.

For autospeedup to occur, all three of the following conditions must occur:

* N1 (Number of Nodes) > 1,000
* N2 (TSTOP/TSTEP) >= 10,000
* N3 (Total Diodes, BJTs, JFETs and MOSFETSs) > 300

Autospeedup is most likely to occur if the circuit also meets either of the
following conditions:

* N2 >=1e+8, and N3 > 500, or

* N2 >=2e+5,and N3 > le+4

If HSPICE does activate autospeedup, you might need to disable it. To do
this, set TRCON=-1, and increase TSTEP or RMAX (or both), to balance
accuracy and speed.

Table 10-7 Tolerance Options (Sheet 1 of 4)

Parameter Description

ABSH =x Sets the absolute current change, through voltage- defined branches
(voltage sources and inductors). Use ABSH with DI and RELH, to check
for current convergence. Default is 0.0.

ABSV =X Absolute minimum voltage, for DC and transient analysis. ABSV is the

same as VNTOL. If accuracy is more critical than convergence, decrease
VNTOL. If you need voltages less than 50 microvolts, reduce VNTOL to
two orders of magnitude less than the smallest desired voltage. This

ensures at least two digits of significance. Typically, you do not need to
change VNTOL, except to simulate a high-voltage circuit. A reasonable
value for 1000-volt circuits is 5 to 50 millivolts. Default is 50 (microvolts).

Transient Analysis: Transient Control Options

10-18

Table 10-7 Tolerance Options (Sheet 2 of 4)

Parameter Description

ABSVAR = x Maximum voltage change, from one time point to the next. Use this
option with the DVDT algorithm. If the simulator produces a convergent
solution that is greater than ABSVAR, it:

* Discards the solution.

« Sets the timestep to a smaller value.

+ Recalculates the solution.

This is a timestep reversal. Default is 0.5 (volts).

BYTOL =x Voltage tolerance, at which a MOSFET, MESFET, JFET, BJT, or diode
becomes latent. HSPICE does not update status of latent devices.
Default = MBYPASS x VNTOL.

ACCURATE Selects a time algorithm that uses LVLTIM=3 and DVDT=2, for circuits
such as high-gain comparators. Use this option with circuits that combine
high gain and large dynamic range, to guarantee solution accuracy.

If you set ACCURATE to 1, HSPICE uses the following control options:
e LVLTIM=3

« DVDT =2

* RELVAR=0.2

« ABSVAR=0.2

« FT=0.2

« RELMOS =0.01

Default = 0.

CHGTOL =x Charge error tolerance, if LVLTIM = 2. Use CHGTOL with RELQ, to set
the absolute and relative charge tolerance, for all HSPICE capacitances.
Default = 1e-15 (coulomb).

DI =x Sets the maximum iteration-to-iteration current change, through voltage-
defined branches (voltage sources and inductors). Use this option only if
the value of the ABSH control option is greater than 0. Default = 0.0.

FAST To speed-up simulation, this option does not update the status of latent

devices. Use this option for MOSFETs, MESFETSs, JFETs, BJTs, and
diodes. Default = 0.

A device is latent if its node voltage variation (from one iteration to the
next) is less than the value of the BYTOL control option, or the
BYPASSTOL element parameter. (If FAST is on, HSPICE sets BYTOL to
different values, for different types of device models.)

Besides the FAST option, you can also use NOTOP and NOELCK to
reduce input pre-processing time. Increasing the MBYPASS or BYTOL
value also helps simulations to run faster, but can reduce accuracy.

Transient Analysis: Transient Control Options
10-19

Table 10-7 Tolerance Options (Sheet 3 of 4)

Parameter

Description

MAXAMP = x

Maximum current through voltage-defined branches (voltage sources
and inductors). If the current exceeds the MAXAMP value, HSPICE
reports an error. Default = 0.0.

MBYPASS = x

Computes the default value for the BYTOL option:
BYTOL = MBYPASS x VNTOL

Also multiplies the RELV voltage tolerance. Set MBYPASS to about 0.1,
for precision analog circuits.

+ Default =1, for DVDT =0, 1, 2, or 3.
» Default = 2 for DVDT = 4.

Coefficient for trapezoidal integration. Range is 0.0 to 0.5. Default=0.5.

Sets relative current tolerance, through voltage-defined branches
(voltage sources and inductors). Use RELH to check current
convergence, but only if the value of the ABSH control option is greater
than zero. Default = 0.05.

RELI = x

Sets the relative error/tolerance change, from iteration to iteration. This
value determines convergence for all currents, in diode, BJT, and JFET
devices. (RELMOS sets the tolerance for MOSFETS). This is the percent
change in current, from the value calculated at the previous timepoint.

¢ Default =0.01 for KCLTEST = 0.
¢ Default = 1e-6 for KCLTEST = 1.

RELQ = x

Used in the timestep algorithm for local truncation error (LVLTIM = 2).
RELQ changes the size of the timestep. If the capacitor charge
calculation (in the present iteration) exceeds that of the past iteration, by
a percentage greater than the value of RELQ, then HSPICE reduces the
internal timestep (Delta). Default = 0.01.

RELTOL,
RELV

Sets the relative error tolerance, for voltages. Use RELV, with the ABSV
control option, to determine voltage convergence. Increasing RELV
increases the relative error. RELV is the same as RELTOL. The RELI and
RELVDC options default to the RELTOL value. Default = 1e-3.

RELVAR = x

Use this option with ABSVAR and the DVDT timestep algorithm, to set
the relative voltage change for LVLTIM = 1 or 3. If the node voltage at the
current time point exceeds the node voltage at the previous time point by
RELVAR, then HSPICE reduces the timestep, and calculates a new
solution at a new time point. Default = 0.30 (30%).

Transient Analysis: Transient Control Options

10-20

Table 10-7 Tolerance Options (Sheet 4 of 4)

Parameter

Description

SLOPETOL = x

Minimum value for breakpoint table entries in a piecewise linear (PWL)
analysis. If the difference in the slopes of two consecutive PWL
segments is less than the SLOPETOL value, HSPICE ignores the
breakpoint, for the point between the segments. Default=0.5.

TIMERES = x

Minimum separation between breakpoint values, for the breakpoint table.
If two breakpoints are closer together (in time) than the TIMERES value,
HSPICE enters only one of them in the breakpoint table. Default = 1 ps.

TRTOL = x

Used in the timestep algorithm for local truncation error (LVLTIM = 2).
After this algorithm generates TRTOL, HSPICE multiplies the internal
timestep by TRTOL. Although TRTOL reduces simulation time, it also
maintains accuracy. This factor estimates the amount of error introduced,
if you truncate Taylor series expansion, which the algorithm uses.

This error reflects the minimum timestep required, to reduce simulation
time and maintain accuracy. The range of TRTOL is 0.01 to 100; typical
values range from 1 to 10. If you set TRTOL to 1 (the minimum value),

HSPICE uses a very small timestep. As you increase the TRTOL setting,
the timestep size increases. Default = 7.0.

VNTOL = x,

Absolute minimum voltage, for DC and transient analysis. ABSV is the
same as VNTOL. Decrease VNTOL, if accuracy is more critical than
convergence. If you need voltages less than 50 microvolts, reduce
VNTOL to two orders of magnitude less than the smallest desired
voltage. This ensures at least two significant digits. Typically, you do not
need to change VNTOL, unless you are simulating a high-voltage circuit.
For 1000-volt circuits, a reasonable value can be 5 to 50 millivolts.
Default = 50 (microvolts).

Table 10-8 Limit Options (Sheet 1 of 3)

Parameter

Description

AUTOSTOP

Stops the transient analysis, after calculating all TRIG-TARG and FIND-
WHEN measure functions. This option can substantially reduce CPU time. If
the data file contains measure functions (such as AVG, RMS, MIN, MAX, PP,
ERR, ERR1,2,3, and PARAM), then HSPICE disables AUTOSTOP.

If on, .TRAN simulation stops when it finds all . MEASURE results. Can be 0
(off, the default) or 1 (on).

BKPSIZ = x

Size of the breakpoint table. Default = 5000.

Transient Analysis: Transient Control Options
10-21

Table 10-8 Limit Options (Sheet 2 of 3)

DELMAX =X

Maximum Delta of the internal timestep.HSPICE automatically sets the
DELMAX value, based on factors listed in Timestep Control for Accuracy on
page 10-25. The initial DELMAX value, in the output listing, is generally not
the value used for simulation

Limits voltage in transient analysis. Default = 1000.

Decreases Delta (internal timestep) by the specified fraction of a timestep
(TSTEP), for the first time point of a transient. Decrease the FS value to help
circuits that have timestep convergence difficulties. DVDT = 3 uses FS to
control the timestep.

Delta = FS x[MIN(TSTEP, DELMAX, BKPT)]
You specify DELMAX.

BKPT is related to the breakpoint of the source.
The .TRAN statement sets TSTEP. Default = 0.25.

Decreases Delta (the internal timestep), by a specified fraction of a timestep
(TSTEP), for an iteration set that does not converge. If DVDT = 2 or
DVDT = 4, FT controls the timestep. Default = 0.25.

GMIN = x

Minimum conductance added to all PN junctions for a time sweep in transient
analysis. Default = 1e-12.

IMIN = X,
ITL3 =x

Minimum timestep, in timestep algorithms for transient analysis. IMIN is the
minimum number of iterations required, to obtain convergence. If the number
of iterations is less than IMIN, the internal timestep (Delta) doubles. This
option decreases simulation times, in circuits where nodes are stable most of
the time (such as digital circuits). If the number of iterations is greater than
IMIN, the timestep stays the same, unless the number of iterations exceeds
IMAX (see IMAX). ITL3 is the same as IMIN. Default = 3.0.

IMAX = X,
ITL4 = x

Maximum timestep, in timestep algorithms in transient analysis. IMAX sets
the maximum iterations to obtain a convergent solution at a timepoint. If the
number of iterations needed is greater than IMAX, the internal timestep
(Delta) decreases by a factor equal to the FT transient control option. HSPICE
uses the new timestep to calculate a new solution. IMAX also works with the
IMIN transient control option. ITL4 is the same as IMAX. Default = 8.0.

ITLS =X

Iteration limit for transient analysis. If a circuit uses more than ITL5 iterations,
the program prints all results, up to that point. The default (0.0) allows an
infinite number of iterations.

Transient Analysis: Transient Control Options

10-22

Table 10-8 Limit Options (Sheet 3 of 3)

RMAX = x

Sets the TSTEP multiplier, which controls the maximum value (DELMAX) for
the Delta of the internal timestep:

DELMAX = TSTEPXRMAX

o Default =5, if dvdt = 4 and Ivltim = 1.
» Otherwise, the default = 2.

The maximum value is 1e+9, the minimum value is 1e-9. The recommended
maximum value is le+5.

RMIN = x

Sets the minimum value of Delta (internal timestep). An internal timestep
smaller than RMINXTSTEP, terminates the transient analysis, and reports an
internal timestep too small error. If the circuit does not converge in IMAX
iterations, Delta decreases by the amount you set in the FT option.

Default = 1.0e-9.

VFLOOR =X

Minimum voltage to print in output listing. All voltages lower than VFLOOR,
print as 0. Affects only the output listing: VNTOL (ABSV) sets minimum
voltage to use in a simulation.

Matrix Manipulation Options

After HSPICE generates individual linear elements in an input netlist,
it constructs the linear equations for the matrix. You can set variables
that affect how HSPICE constructs and solves the matrix equation,
including the PIVOT and GMIN options. GMIN places a variable into
the matrix, to prevent the matrix becoming ill-conditioned.

The PIVOT option selects a pivoting method, which reduces
simulation time, and assists in DC and transient convergence.
Pivoting reduces errors, resulting from elements in the matrix that
are widely different in magnitude. PIVOT searches the matrix, to find
the largest element value, and uses this value as the pivot.

Transient Analysis: Transient Control Options
10-23

Simulation Speed and Accuracy

Convergence is the ability to solve a set of circuit equations, within
specified tolerances, and within a specified number of iterations. In
numerical circuit simulation, you can specify relative and absolute
accuracy for the circuit solution. The simulator iteration algorithm
attempts to converge to a solution that is within these set tolerances.
If consecutive simulations achieve results within the specified
accuracy tolerances, circuit simulation has converged. How quickly
the simulator converges, is often a primary concern to a designer—
especially for preliminary design trials. So designers willingly
sacrifice some accuracy, for simulations that converge quickly.

Simulation Speed

HSPICE can substantially reduce the computer time needed to solve
complex problems. Use the following options to alter the internal
algorithms to increase simulation efficiency.

« .OPTION FAST - sets additional options, which increase
simulation speed, with minimal loss of accuracy

« .OPTION AUTOSTOP - terminates the simulation, after
completing all . MEASURE statements. This is of special interest,
when testing corners.

For descriptions of the FAST and AUTOSTOP options, see Transient
Control Options on page 10-15.

Transient Analysis: Simulation Speed and Accuracy

10-24

Simulation Accuracy

In HSPICE, the default control option values aim for superior
accuracy, within an acceptable amount of simulation time. The
control options and their default settings (to maximize accuracy) are:

DVDT = 4 LVLTIM=1 RVAX = 5 SLOPETOL = 0.75
FT = FS = 0.25 BYPASS = 1 BYTOL = MBYPASSXVNTOL = 0. 100m

Note: BYPASS is on (set to 1), only when DVDT = 4. For other
DVDT settings, BYPASS is off (0). The SLOPETOL value is
0.75, only if DVDT =4 and LVLTIM = 1. For all other values of
DVDT or LVLTIM, SLOPETOL defaults to 0.5.

Timestep Control for Accuracy

The DVDT control option selects the timestep control algorithm. For
a description of the relationships between DVDT and other control
options, see Selecting Timestep Control Algorithms on page 10-31.

The DELMAX control option also affects simulation accuracy.
DELMAX specifies the maximum timestep size. If you do not set
DELMAX in an .OPTION statement, HSPICE computes a DELMAX
value. Factors that determine the computed DELMAX value are:

« .OPTION RMAX and FS.

» Breakpoint locations, for a PWL source.

» Breakpoint locations, for a PULSE source.

 Smallest period, for a SIN source.

« Smallest delay, for a transmission line component.

« Smallest ideal delay, for a transmission line component.
« TSTEP value, in a .TRAN analysis.

* Number of points, in an FFT analysis.

Transient Analysis: Simulation Speed and Accuracy
10-25

Use the FS and RMAX control options, to control the DELMAX value.

 The FS option, which defaults to 0.25, scales the breakpoint
interval in the DELMAX calculation.

 The RMAX option defaults to 5 (if DVDT =4 and LVLTIM = 1),
and scales the TSTEP (timestep) size in the DELMAX
calculation.

For circuits that contain oscillators or ideal delay elements, use
an .OPTION statement, to set DELMAX to one-hundredth of the
period or less.

The ACCURATE control option tightens the simulation options, to
output the most accurate set of simulation algorithms and
tolerances. If you set ACCURATE to 1, HSPICE uses these control
options:

DVDT =2 RELVAR = BYPASS=0 FI=FS=0.2 RELMOS=0.

BYTOL=0 0.2 ABSVAR =0. RMAX =2 01
LVLTIM=3 2 g'éopETOL =

Models and Accuracy

Simulation accuracy depends on the sophistication and accuracy of
the models you use. Advanced MOS, BJT, and GaAs models provide
superior results for critical applications.

The following model types increase simulation accuracy:

» Algebraic models, which describe parasitic interconnect
capacitances as a function of the width of the transistor. The wire
model extension of the resistor can model the metal, diffusion, or
poly interconnects, to preserve the relationship between the
physical layout and the electrical property.

Transient Analysis: Simulation Speed and Accuracy

10-26

 The ACM parameter in MOS models, which calculates defaults for
source and drain junction parasitics. ACM equations calculate:

- size of the bottom wall
- length of the sidewall diodes
- length of a lightly doped structure.

SPICE defaults do not calculate the junction diode. Specify AD,
AS, PD, PS, NRD, NRS, to override the default calculations.

« CAPOP =4 models the most advanced charge conservation,
non-reciprocal gate capacitances. HSPICE calculates the gate
capacitors and overlaps, from the IDS model for LEVEL 49 or 53.
Simulation ignores the CAPOP parameter; instead, use the
CAPMOD model parameter, with a reasonable value.

Guidelines for Choosing Accuracy Options

Use the ACCURATE option for:

* Analog or mixed signal circuits.

» Circuits with long time constants, such as RC networks.

e Circuits with ground bounce.

Use the default options (DVDT = 4) for:

» Digital CMOS.

« CMOS cell characterization.

« Circuits with fast moving edges (short rise and fall times).

For ideal delay elements, use one of the following:

e ACCURATE.

« DVDT=3.

« DVDT = 4. If the minimum pulse width of a signal is less than the
minimum ideal delay, set DELMAX to a value smaller than the
minimum pulse width.

Transient Analysis: Simulation Speed and Accuracy
10-27

Numerical Integration Algorithm Controls

In HSPICE transient analysis, you can select one of three options to
convert differential terms into algebraic terms.:

e Gear
 Backward-Euler

« Trapezoidal

SYNTAX:
Gear algorithm:

. OPTI ON METHOD = GEAR
Backward-Euler:

. OPTI ON METHOD = GEAR MU = 0

Trapezoidal algorithm (default):
. OPTI ON METHOD = TRAP

Each algorithm has advantages and disadvantages. Ideally, the
trapezoidal is the preferred algorithm overall, because of its highest
accuracy level and lowest simulation time.

However, selecting the appropriate algorithm for convergence is not
always that easy or ideal. Which algorithm you select, largely
depends on the type of circuit, and its associated behavior when you
use different input stimuli.

Gear and Trapezoidal Algorithms

The algorithm that you select, automatically sets the timestep control
algorithm. In HSPICE, if you select the GEAR algorithm (including
Backward-Euler), the timestep control algorithm defaults to the
truncation timestep algorithm. However, if you select the trapezoidal
algorithm, the DVDT algorithm is the default. To change these
HSPICE defaults, use the timestep control options

Transient Analysis: Numerical Integration Algorithm Controls

10-28

Figure 10-5 Time Domain Algorithm

Initialization

IC
NODESET | ¢

Iteration
Solution

Converged

Time Step A

Reversal Algorithm

¢ Advancement (they = tdg + ¢

Time Step
Unit Check

. - Extrapolated Solution
Falil . :
Timestep too for timepoint, n
small error [—————

L

The trapezoidal algorithm can cause computational oscillation—that
Is, oscillation that the algorithm itself causes, not oscillation from the
circuit design. This also produces an unusually long simulation time.
If this occurs in inductive circuits (such as switching regulators), use
the GEAR algorithm.

If transient analysis fails to converge using METHOD=TRAP and
DVDT timesteps (for example, due to trapezoidal oscillation), and
HSPICE reports an internal timestep too small error, HSPICE then
starts the autoconvergence process by default. This process sets
METHOD=GEAR and LVLTIM=2, and uses the Local Truncation
Error (LTE) timestep algorithm. HSPICE then runs another transient
analysis, to automatically obtain convergent results.

Transient Analysis: Numerical Integration Algorithm Controls
10-29

To manually improve on autoconvergence results, or if
autoconvergence fails to converge, you can do either of the
following:

« Set METHOD=GEAR in the netlist, and try to obtain convergent
results directly.

To improve accuracy or speed, you can adjust tstep in a . TRAN
statement, or in transient control options (such as RMAX, RELQ,
CHGTOL, or TRTOL).

« Set METHOD=TRAP in the netlist, then manually adjust tstep
and the relevant control options (such as CSHUNT or GSHUNT).

Figure 10-6 Iteration Algorithm

Initial Guess
—— Element Evaluation:
I.V.Q. Flux
Linearization of
non-linear elements
ABSI
c Element RET
onvergence S —Fsooe
el ABSMOS
> RELMOS
Y
_ METHOD
A Gear or Trapezoidal [—
MAXORD
-
v GMIN
—————
ASsslemt')\}le ta_nd < PIVOT
olve \iatrix PIVREL
Equations PIVTOL
Nodal Voltage ABSV
FAIL Convergence 4&
Test NEWTOL
-—————
Converged

Transient Analysis: Numerical Integration Algorithm Controls
10-30

Selecting Timestep Control Algorithms

In HSPICE, you can select one of three dynamic timestep-control
algorithms:

e lteration Count Dynamic Timestep Algorithm .
e Local Truncation Error (LTE) Dynamic Timestep .
« DVDT Dynamic Timestep Algorithm .

Each algorithm uses a dynamically-changing timestep, which
increases the accuracy of simulation, and reduces the simulation
time. To do this, simulation varies the value of the timestep, over the
transient analysis sweep, depending on the stability of the output.
Dynamic timestep algorithms increase the timestep value when
internal nodal voltages are stable, and decrease the timestep value
when nodal voltages change quickly.

Figure 10-7 Internal Variable Timestep

A Changing Time Step - Dynamic

—r
=
/

e

at_. At

Transient Analysis: Selecting Timestep Control Algorithms
10-31

The LVLTIM option selects the timestep algorithm:

LVLTIM = 0O selects the iteration count algorithm.

LVLTIM = 1 selects the DVDT timestep algorithm, and the
iteration count algorithm. To control operation of the timestep
control algorithm, set the DVDT control option. For LVLTIM = 1
and DVDT =0, 1, 2, or 3, the algorithm does not use timestep
reversal. For DVDT = 4, the algorithm uses timestep reversal.

For more information about the DVDT algorithm, see DVDT
Dynamic Timestep Algorithm on page 10-33.

LVLTIM = 2 selects the truncation timestep algorithm, and the
iteration count algorithm (with reversal).

LVLTIM = 3 selects the DVDT timestep algorithm (with timestep
reversal), and the iteration count algorithm. For LVLTIM = 3 and
DVDT =0, 1, 2, 3, or 4, the algorithm uses timestep reversal.

If HSPICE starts the autoconvergence process, it sets LVLTIM = 2.

Iteration Count Dynamic Timestep Algorithm

The simplest dynamic timestep algorithm is the iteration count
algorithm. The following options control this algorithm:

Table 10-9 Dynamic Timestep Options
Option Description
IMAX Controls the internal timestep size, based on the number of iterations required
for a timepoint solution. If the number of iterations per timepoint exceeds the
IMAX value, the internal timestep decreases. Default = 8.
IMIN Controls the internal timestep size, based on the number of iterations required

for the previous timepoint solution. If the last timepoint solution completes in

fewer than IMIN iterations, the internal timestep increases. Default = 3.

Transient Analysis: Selecting Timestep Control Algorithms

10-32

Local Truncation Error (LTE) Dynamic Timestep

The local truncation error timestep method uses a Taylor-series
approximation, to calculate the next timestep for a transient analysis.
This method uses the allowed local truncation error, to calculate an
internal timestep. If the calculated timestep is smaller than the current
timestep, HSPICE sets back the timepoint (timestep reversal), and
uses the calculated timestep to increment the time. If the calculated
timestep is larger than the current timestep, then HSPICE does not
reverse the timestep. The next timepoint uses a new timestep.

To select the timestep algorithm for local truncation error, set
LVLTIM = 2 or METHOD=GEAR. The control options, available with
the algorithm for local truncation error, are:

TRTOL (default = 7)

CHGTOL (default = 1le-15)

RELQ (default = 0.01)

For some circuits (such as magnetic core circuits), GEAR and LTE
provide more accurate result than TRAP. You can use this method
with circuits containing inductors, diodes, BJTs (even Level 4 and
above), MOSFETSs, or JFETSs.

DVDT Dynamic Timestep Algorithm
To select this algorithm, set the LVLTIM option to 1 or 3.

 IfyousetLVLTIM = 1, the DVDT algorithm does not use timestep
reversal. HSPICE saves the results for the current timepoint, and
uses a new timestep for the next timepoint.

« Ifyouset LVLTIM = 3, the algorithm uses timestep reversal. If the
results do not converge at a specified iteration, HSPICE ignores
the results of the current timepoint, sets back the time by the old
timestep, and then uses a new timestep. Therefore, LVLTIM = 3
IS more accurate, and more time-consuming, than LVLTIM = 1.

Transient Analysis: Selecting Timestep Control Algorithms
10-33

This algorithm uses different tests, to decide whether to reverse
the timestep, depending on how you set the DVDT control option.

« For DVDT =0, 1, 2, or 3, the decision is based on the
SLOPETOL control option.

 For DVDT =4, the decision is based on how you set the
SLOPETOL, RELVAR, and ABSVAR control options.

The DVDT algorithm calculates the internal timestep, based on the
rate of nodal voltage changes.

» For circuits with rapidly-changing nodal voltages, the DVDT
algorithm uses a small timestep.

» For circuits with slowly-changing nodal voltages, the DVDT
algorithm uses larger timesteps.

The DVDT = 4 setting selects a timestep control algorithm for non-
linear node voltages. If you set the LVLTIM option to either 1 or 3,
then DVDT = 4 also uses timestep reversals. To measure non-linear
node voltages, HSPICE measures changes in slopes of the
voltages. If the change in slope is larger than the SLOPETOL control
setting, simulation reduces the timestep by the factor set in the FT
control option. The FT option defaults to 0.25.

HSPICE sets the SLOPETOL value to 0.75 for LVLTIM = 1, and to
0.50 for LVLTIM = 3. Reducing the value of SLOPETOL increases
simulation accuracy, but also increases simulation time.

 ForLVLTIM =1, SLOPETOL and FT control simulation accuracy.

 For LVLTIM = 3, the RELVAR and ABSVAR control options also
affect the timestep, and therefore affect the simulation accuracy.

Use the RELVAR and ABSVAR options with the DVDT option to
improve simulation time or accuracy. For faster simulation time,
increase RELVAR and ABSVAR (but this might decrease accuracy).

Transient Analysis: Selecting Timestep Control Algorithms

10-34

Note: If you need backward compatibility with HSPICE Release
95.3, use these options. Setting .OPTION DVDT =3
automatically sets all of these values.

LVLTIM =1 RVAX = 2 SLOPETOL = 0.5
FT = FS = 0.25 BYPASS = 0 BYTOL = 0.050

Timestep Controls

The RMIN, RMAX, FS, FT, and DELMAX control options define the
minimum and maximum internal timestep, for the DVDT algorithm. If
the timestep is below the minimum, program execution stops.

EXAMPLE:

If the timestep becomes less than the minimum internal timestep
(defined as TSTEPXRMIN), HSPICE reports an internal timestep too
small error.

Note: RMIN is the minimum timestep coefficient. Default is 1e-9.
TSTEP is the time increment, as set in the .TRAN statement.

If you set DELMAX in an .OPTION statement, HSPICE uses
DVDT = 0. If you do not specify DELMAX in an .OPTION statement,
then HSPICE computes a DELMAX value. For DVDT =0, 1, or 2, the
maximum internal timestep is:

mi n[(TSTOP/ 50), DELMAX, (TSTEPXRVAX)]

The TSTOP time is the transient sweep range, as set in the .TRAN
Sstatement.

Transient Analysis: Selecting Timestep Control Algorithms
10-35

One exception is in the autospeedup process. When dealing with
large non-linear circuit with very big TSTOP/TSTEP values (for
example, . TRAN 1n 1), HSPICE might activate autospeedup. This
process automatically sets RMAX to a bigger value, and sets the
maximum internal timestep to:

mi n[(TSTOP/ 20) , (TSTEPXRVAX) |

Set TRCON=-1 to disable autospeedup. You can then adjust TSTEP
and RMAX, to balance accuracy and speed.

In circuits with piecewise linear (PWL) transient sources, the
SLOPETOL option also affects the internal timestep. A PWL source,
with a large number of voltage or current segments, contributes a
correspondingly-large number of entries to the internal breakpoint
table. The number of breakpoint table entries contributes to the
internal timestep control.

If the difference in the slope, for consecutive segments of a PWL
source, is less than the SLOPETOL value, then HSPICE ignores the
breakpoint table entry, for the point between the segments. For a
PWL source, with a signal that changes value slowly, ignoring its
breakpoint table entries can help reduce the simulation time. Data in
the breakpoint table is a factor in the internal timestep control, so
setting a high SLOPETOL reduces the number of usable breakpoint
table entries, which reduces the simulation time.

Transient Analysis: Selecting Timestep Control Algorithms

10-36

Fourier Analysis
This section describes the Fourier and FFT Analysis flow.

Figure 10-8 Fourier and FFT Analysis

Transient
Four FET Time-sweep
+ simulation
Output Variables Display Options
.FOUR Statement
Transient
|
ECNT FFT Time-sweep
' simulation

v
v v

Output Variable Display Option
vy vy v v
Vv I P Other Window Format

.FFT Statement

HSPICE provides two different Fourier analyses:

» .FOUR is the same as is available in SPICE 2G6: a standard,
fixed-window analysis tool.

 _.FFT is a much more flexible Fourier analysis tool. Use it for
analysis tasks that require more detail and precision.

Transient Analysis: Fourier Analysis
10-37

.FOUR Statement

This statement performs a Fourier analysis, as part of the transient
analysis. You can use the .FOUR statement in HSPICE perform the
Fourier analysis over the interval (tstop-fperiod, tstop), where:

» tstop is the final time, specified for the transient analysis
(see Using the .TRAN Statement on page 10-4).

« fperiod is a fundamental frequency period (freq parameter).

HSPICE performs Fourier analysis on 501 points of transient
analysis data on the last 1/f time period, where f is the fundamental
Fourier frequency. HSPICE interpolates transient data, to fit on 501
points, running from (tstop-1/f) to tstop.

To calculate the phase, the normalized component, and the Fourier
component, HSPICE uses 10 frequency bins. The Fourier analysis
determines the DC component, and the first nine AC components.
For improved accuracy, the .FOUR statement can use non-linear,
instead of linear, interpolation.

SYNTAX:
.FOUR freq ovl <ov2 ov3 ...>

freq Fundamental frequency.
ovl ... Outputvariables to analyze.

EXAMPLE:
. FOUR 100K V(5)

Transient Analysis: Fourier Analysis

10-38

Accuracy and DELMAX

For better accuracy, set small values for the RMAX or DELMAX
options. For maximum accuracy, set .OPTION DELMAX to (period/
500). For circuits with very high resonance factors (high-Q circuits,
such as crystal oscillators, tank circuits, and active filters), set
DELMAX to less than (period/500).

Fourier Equation

The total harmonic distortion is the square root of the sum of the
squares, of the second through ninth normalized harmonic, times
100, expressed as a percent:

9 1/2
1 . 25
THDzﬁ—lEE y RZH [100%
th=2 U

This interpolation can result in various inaccuracies.

EXAMPLE:

If the transient analysis runs at intervals longer than 1/(501*f), then
the frequency response of the interpolation dominates the power
spectrum. Furthermore, this interpolation does not derive an error
range for the output.

The following equation calculates the Fourier coefficients:

9 9
a(t) = > Cm [cos(mt) + > Dy, [sSin(mt)
m =0 m =0

Transient Analysis: Fourier Analysis
10-39

The following equations calculate values for the preceding equation:

Tt
Cpy = =0 g(t) os(m 1) (@t
—Tt
Tt
D, = %DJ’ g(t) Gin(m 0t) [t
—Tt
9 9
g(t) = > Cm [cos(m [1) + > Dy, [(sin(m [1)
m=0 m=0

The following equations approximate the C and D values:

500
_ (2 Otlim [hy
Cm— Y g(nDﬁt)Et:osD c01 O
n=0
500 9 Ol T
Dm= > g(nmt)EksinD 501 O
n=~0

The following equations calculate the magnitude and phase:

_ 2 24\1/2
Rm - (Cm+Dm)

® t)
= arctan
m %mDD

Transient Analysis: Fourier Analysis
10-40

EXAMPLE: (Input)
The following is input for an .OP, .TRAN, or .FOUR analysis.

ML 2100 NMS W= 20UL = 5U

M 2133PMS W=40UL = 5U

VDD 3 0 5

VIN1 O SIN 2.5 2.5 20MEG

. MODEL NMOS NMOS LEVEL = 3 CGDO = . 2N CGSO = . 2N
+ CEBO = 2N

. MODEL PMOS PMOS LEVEL = 3 CAEO = . 2N CGSO = . 2N
+CGBO = 2N

. OP

. TRAN 1N 100N
. FOUR 20MEG V(2)
.PRINT TRAN V(2) V(1)
. END

EXAMPLE: (Output)

*kkk k%

cnos inverter

x* fourier analysistnom= 25.000 tenp = 25.000 **
fourier conmponents of transient response v(2)

dc conponent = 2.430D+00

har noni c frequency fourier normal i zed phase nornal i zed

no (hz) conmponent conmponent (degq) phase (degq)
1 20. 0000x 3. 0462 1. 0000 176. 5386 0.
2 40. 0000x 115.7006m 37.9817m -106. 2672 -282.8057
3 60. 0000x 753.0446m 247.2061m 170.7288 -5.8098
4 80. 0000x 77.8910m 25.5697m -125.9511 -302.4897
5 100. 0000x 296.5549m 97.3517m 164. 5430 -11. 9956
6 120. 0000x 50.0994m 16. 4464m - 148. 1115 - 324. 6501
7 140. 0000x 125.2127m 41.1043m 157.7399 -18. 7987
8 160. 0000x 25.6916m 8.4339m 172. 9579 - 3. 5807
9 180. 0000x 47.7347m 15.6701lm 154. 1858 -22.3528

total harnonic distortion = 27.3791 per cent

For information about Fourier analysis, see Fourier Analysis on
page 10-37.

Transient Analysis: Fourier Analysis
10-41

.FFT Statement

For information about the .FFT statement, see “FFT Spectrum
Analysis” in the HSPICE Applications Manual.

Transient Analysis: Fourier Analysis
10-42

11

AC Sweep and Small Signal Analysis

This chapter describes how to perform an AC sweep, and a small
signal analysis. It explains the following topics:

« AC Small Signal Analysis

AC Statement

AC Control Options

AC Analysis of an RC Network

Other AC Analysis Statements

Also see AC Analysis Output Variables on page 7-31.

11-1

AC Small Signal Analysis

AC small signal analysis in HSPICE computes AC output variables
as a function of frequency (see Figure 11-1). HSPICE first solves for
the DC operating point conditions. It then uses these conditions to

develop linear, small-signal models, for all non-linear devices in the
circuit.

Figure 11-1 AC Small Signal Analysis Flow

Simulation Experiment

'
+ ; :

DC Transient AC

' '

Other AC analysis AC small-signal
statements simulation
.NOISE
.DISTO
Y .SAMPLE
¢ ¢ .NETWORK
Options: DC options, to solve
P Method operating-point

ABSH

ACOUT

DI

MAXAMP

RELH

UNWRAP

AC Sweep and Small Signal Analysis: AC Small Signal Analysis
11-2

In HSPICE, the output of AC Analysis includes voltages and
currents.

HSPICE converts capacitor and inductor values to their
corresponding admittances:

YC =jwC for capacitors

YL = 1/jwl for inductors

Resistors can have different DC and AC values. If you specify

AC = <value> in a resistor statement, HSPICE uses the DC value of
resistance to calculate the operating point, but uses the AC
resistance value in the AC analysis. When you analyze operational
amplifiers, HSPICE uses a low value for the feedback resistance, to
compute the operating point for the unity gain configuration. You can
then use a very large value for the AC resistance, in AC analysis of
the open loop configuration.

AC analysis of bipolar transistors is based on the small-signal
equivalent circuit, as described in Chapter 4, “Using BJT Models”, in
the HSPICE Elements and Device Models Manual. MOSFET AC-
equivalent circuit models are described in Chapter 8, “Introducing
MOSFETs”, in the HSPICE Elements and Device Models Manual.

The AC analysis statement can sweep values for:
* Frequency.

Element.

 Temperature.

* Model parameter.

 Randomized (Monte Carlo) distribution.

Optimization and AC analysis.

AC Sweep and Small Signal Analysis: AC Small Signal Analysis
11-3

Additionally, as part of the small-signal analysis tools, HSPICE
provides:

* Noise analysis.

« Distortion analysis.
* Network analysis.
e Sampling noise.

AC Statement

You can use the .AC statement in several different formats,
depending on the application, as shown in the examples below. You
can also use the .AC statement to perform data-driven analysis in
HSPICE.

SYNTAX:

Single/Double Sweep
.ACtype np fstart fstop

.AC type np fstart fstop <SWEEP var <START=>start
+ <STOP=>stop <STEP=>i ncr>

.ACtype np fstart fstop <SWEEP var type np start stop>

.AC type np fstart fstop <SWEEP var START="param expr1"
+ STOP="param expr2" STEP="param expr3">

.AC type np fstart fstop <SWEEP var start_expr
+ stop_expr step_expr>

Sweep Using Parameters

SYNTAX:

.ACtype np fstart fstop <SWEEP DATA = dat anne
. AC DATA = dat anm

AC Sweep and Small Signal Analysis: .AC Statement

11-4

. AC DATA = datanm <SWEEP var <START=>start <STOP=>stop
+ <STEP=>i ncr >

. AC DATA = dat anm <SWEEP var type np start stop>

. AC DATA = dat anm <SWEEP var START="param expr 1"
+ STOP="param expr2" STEP="param expr3">

. AC DATA = datanm <SWEEP var start_expr stop_expr
+ step_expr>

Optimization

SYNTAX:

. AC DATA = datanm OPTI M ZE = opt _par_fun
+ RESULTS = neasnanes MODEL = opt nod

See also Analysis Statement (.DC, .TRAN, .AC) on page 12-41.

Random/Monte Carlo

You can use the following syntax in HSPICE:

.ACtype np fstart fstop <SWEEP MONTE = val >

AC Sweep and Small Signal Analysis: .AC Statement

11-5

The .AC statement keywords and parameters are:

Table 11-1 .AC Monte Carlo Syntax

Parameter Description

DATA = datanm | Data name, referenced in the . AC statement

incr Increment value of the voltage, current, element, or model parameter. If you
use type variation, specify the np (number of points) instead of incr.

fstart Starting frequency. If you use POI (list of points) type variation, use a list of
frequency values, not fstart fstop.

fstop Final frequency.

MONTE = val Produces a number (val) of randomly-generated values. HSPICE uses
these values to select parameters from a distribution, either Gaussian,
Uniform, or Random Limit (see Monte Carlo Analysis on page 12-13).

np Number of points, or points per decade or octave, depending on which
keyword precedes it.

start Starting voltage or current, or any parameter value for an element or model.
stop Final voltage or current, or any parameter value for an element or a model.
SWEEP This keyword indicates that the .AC statement specifies a second sweep.
TEMP This keyword indicates a temperature sweep

type Can be any of the following keywords:

 DEC - decade variation.
e OCT - octave variation.
e LIN — linear variation.

e POI - list of points.

var Name of an independent voltage or current source, element or model
parameter, or the TEMP (temperature sweep) keyword. HSPICE supports
source value sweep, referring to the source name (SPICE style). If you
select a parameter sweep, a .DATA statement, and a temperature sweep,
then you must choose a parameter name for the source value. You must
also later refer to it in the .AC statement. The parameter name cannot start
with V or I.

AC Sweep and Small Signal Analysis: .AC Statement
11-6

EXAMPLE 1:

The following example performs a frequency sweep, by 10 points per
decade, from 1 kHz to 100 MHz.

. AC DEC 10 1K 100MEG

EXAMPLE 2:

The next line runs a 100-point frequency sweep from 1 Hz to 100 Hz.
.AC LIN 100 1 100HZ

EXAMPLE 3:

The following example performs an AC analysis, for each value of
cload. This results from a linear sweep of cload between 1 pF and 10
pF (20 points), sweeping the frequency by 10 points per decade,
from 1 Hz to 10 kHz,

.AC DEC 10 1 10K SWVEEP cload LIN 20 1pf 210pf
EXAMPLE 4:

The following example performs an AC analysis, for each value of rx,
5 k and 15 k, sweeping the frequency by 10 points per decade, from
1 Hz to 10 kHz.

.AC DEC 10 1 10K SVEEP rx PO 2 5k 15k
EXAMPLE 5:

The next example uses the .DATA statement to perform a series of
AC analyses, modifying more than one parameter. The datanm file
contains the parameters.

.AC DEC 10 1 10K SWVEEP DATA = dat anm
EXAMPLE 6:

The following example illustrates a frequency sweep, and a Monte
Carlo analysis, with 30 trials.

.AC DEC 10 1 10K SVEEP MONTE = 30

AC Sweep and Small Signal Analysis: .AC Statement
11-7

EXAMPLE 7:

If the input file includes an .AC statement, HSPICE runs AC analysis
for the circuit, over a selected frequency range, for each parameter
in the second sweep.

For AC analysis, the data file must include at least one independent
AC source element statement (for example, VI INPUT GND AC 1V).
HSPICE checks for this condition, and reports a fatal error if you did
not specify such AC sources (see Sources and Stimuli on page 5-1).

AC Control Options
Table 11-2 AC Control Options

Parameter | Description

ABSH = x Absolute current change, through voltage-defined branches (voltage
sources and inductors). Use ABSH with DI and RELH, to check for current
convergence. Default is 0.0.

ACOUT AC output calculation method, for the difference in values of magnitude,
phase, and decibels. Use this option for prints and plots. Default = 1.

Default value, ACOUT = 1, selects HSPICE method, which calculates the
difference of the magnitudes of the values.

SPICE method, ACOUT = 0, calculates magnitude of differences.

DI =x Maximum iteration-to-iteration current change, through voltage-defined
branches (voltage sources and inductors). Use this option only if the ABSH
control value is greater than 0. Default = 0.0.

MAXAMP = | Maximum current, through voltage-defined branches (voltage sources and
X inductors). If the current exceeds the MAXAMP value, HSPICE reports an
error. Default = 0.0.

RELH =x Relative tolerance for currents, through voltage-defined branches (voltage
sources and inductors). Use RELH to check current convergence, but only if
the value of the ABSH control option is greater than zero. Default = 0.05.

UNWRAP Displays phase results for AC analysis, in unwrapped form (with a
continuous phase plot).HSPICE uses these results to accurately calculate
group delay. It also uses unwrapped phase results to compute group delay,
even if you do not set UNWRAP.

AC Sweep and Small Signal Analysis: AC Control Options
11-8

AC Analysis of an RC Network

Figure 11-2 shows a simple RC network, with a DC and AC source
applied. The circuit consists of:

 Two resistors, R1 and R2.
« Capacitor C1.
* Voltage source V1.

* Node 1 is the connection between the source positive terminal
and R1.

* Node 2 is where R1, R2, and C1 are connected.
« HSPICE ground is always node 0.

Figure 11-2 RC Network Circuit

1

Val "
10 VDC <> R2
1 VAC —LC1

[™ 0.001 mF

The input netlist for the RC network circuit is:

A SI MPLE AC RUN
. OPTI ON LI ST NODE PCST

. OP

. AC DEC 10 1K 1MEG
.PRINT AC V(1) V(2) I(R2) I(CL)
V110 10 AC 1

RL 12 1K

R2 2 0 1K

ClL 2 0 .001U

. END

AC Sweep and Small Signal Analysis: AC Analysis of an RC Network
11-9

Follow the procedure below to perform AC analysis for an RC
network circulit.

1. Type the above netlist into a file named qui ckAC. sp.

2. To run a HSPICE analysis, type:

hspi ce qui ckAC. sp > quickAC. |is
When the run finishes, HSPICE displays:

>i nf o: ****x* hspice job concl uded

This is followed by a line that shows the amount of real time, user
time, and system time needed for the analysis.

Your run directory includes the following new files:

quickAC.ac0

quickAC.icO

quickAC.lis

quickAC.st0

3. Use an editor to view the .lis and .stO files, to examine the
simulation results and status.

4. Run AvanWaves and open the .sp file.

5. To view the waveform, select the quickAC.acO file from the
Results Browser window.

6. Display the voltage at node 2, using a log scale on the x-axis.

Figure 11-3 shows the waveform that HSPICE produces if you
sweep the response of node 2, as you vary the frequency of the input
from 1 kHz to 1 MHz.

AC Sweep and Small Signal Analysis: AC Analysis of an RC Network
11-10

Figure 11-3 RC Network Node 2 Frequency Response

As you sweep the input from 1 kHz to 1 MHz, the quickAC.lis file
displays:

* Input netlist.

« Details about the elements and topology.
» Operating point information.

» Table of requested data.

The quickAC.icO file contains information about DC operating point
conditions. The quickAC.stO file contains information about the
simulation run status.

To use the operating point conditions for subsequent simulation runs,
execute the .LOAD statement.

AC Sweep and Small Signal Analysis: AC Analysis of an RC Network
11-11

Other AC Analysis Statements

This section describes how to use other AC analysis statements.

.DISTO — AC Small-Signal Distortion Analysis

The .DISTO statement computes the distortion characteristics of the
circuit in an AC small-signal, sinusoidal, steady-state analysis.

The program computes and reports five distortion measures at the
specified load resistor. The analysis assumes that the input uses one
or two signal frequencies.

 HSPICE uses the first frequency (F1, the nominal analysis
frequency) to calculate harmonic distortion. The .AC statement
frequency-sweep sets it.

« HSPICE uses the optional second input frequency (F2) to
calculate intermodulation distortion. To set it implicitly, specify the
skw?2 parameter, which is the F2/F1 ratio.

Table 11-3 .DISTO Syntax

Parameter | Description

DIM2 Intermodulation distortion, first difference. Relative magnitude and phase of
the frequency component (F1 - F2).

DIM3 Intermodulation distortion, second difference. The relative magnitude and
phase of the frequency component (2 [F1 - F2).

HD2 Second-order harmonic distortion. Relative magnitude and phase of the
frequency component 2 [F1 (ignores F2).

HD3 Third-order harmonic distortion. Relative magnitude and phase of the
frequency component 3 [F1 (ignores F2).

SIM2 Intermodulation distortion, sum. Relative magnitude and phase of the
frequency component (F1 + F2).

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-12

The .DISTO summary report includes:

» A set of distortion measures, for each component in each
element.

« A summary of distortion measures for each element.
* A summary of distortion measures for the entire circuit.

SYNTAX:
. DI STO Rioad <inter <skw2 <refpw <spw >>>>

Table 11-4 .DISTO Summary Syntax

Parameter | Description

Rload The resistor element name of the output load resistor, into which the output
power feeds.

refpwr Reference power level, used to compute the distortion products. If you omit
refpwr, the default value is 1mW, measured in decibels magnitude (dbM).
The value must be = 1e-10.

skw?2 Ratio of the second frequency (F2) to the nominal analysis frequency (F1),
in the range 1le-3 < skw2 < 0.999. If you omit skw2, the default value is 0.9.

spwf Amplitude of the second frequency (F2). The value must be = 1le-3.
Default = 1.0.
inter Interval at which HSPICE prints a distortion-measure summary. Specifies a

number of frequency points in the AC sweep (see the np parameter, in .AC
Statement on page 11-4).

» If you omit inter, or set it to zero, HSPICE does not print a summary. To
print or plot the distortion measures, use the .PRINT or .PLOT statement.

» If you set inter to 1 or higher, HSPICE prints a summary of the first
frequency, and of each subsequent inter-frequency increment.

To obtain a summary printout for only the first and last frequencies, set inter

equal to the total number of increments needed, to reach fstop in the .AC

statement. For a summary printout of only the first frequency, set inter to

greater than the total number of increments required, to reach fstop.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-13

EXAMPLE:
.DISTORL 2 0.95 1.0E-3 0.75

HSPICE performs only one distortion analysis per simulation. If your
design contains more than one .DISTO statement, HSPICE runs
only the last statement. The .DISTO statement calculates distortions
for diodes, BJTs (levels 1, 2, 3, and 4), and MOSFETs (Level49 and
Level53, Version 3.22).

Note: HSPICE prints an extensive summary from the distortion
analysis, for each frequency listed. Use the inter parameter in
the .DISTO statement to limit the amount of output generated.

.NOISE Statement — AC Noise Analysis

SYNTAX:

.NA SE ovv srcnaminter

Table 11-5 .NOISE Syntax

Parameter | Description

owv Nodal voltage output variable. Defines the node at which HSPICE sums the
noise.

srcnam Name of the independent voltage or current source, to use as the noise input
reference

inter Interval at which HSPICE prints a noise analysis summary. inter specifies

how many frequency points to summarize in the AC sweep. If you omit inter,
or set it to zero, HSPICE does not print a summary. If inter is equal to or
greater than one, HSPICE prints summary for the first frequency, and once
for each subsequent increment of the inter frequency. The noise report is
sorted according to the contribution of each node to the overall noise level.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-14

EXAMPLE:
.NO SE V(5) VIN 10

Use the .NOISE and .AC statements, to control the noise analysis of
the circuit.

Noise Calculations

Noise calculations in HSPICE are based on complex AC nodal
voltages, which in turn are based on the DC operating point. For
descriptions of noise models for each device type, see the HSPICE
Elements and Device Models Manual. Each noise source does not
statistically correlate to other noise sources in the circuit; the
HSPICE simulator calculates each noise source independently. The
total output noise voltage is the RMS sum of the individual noise
contributions:

I
onoise = Z ‘Zn [In‘2
n=1
Table 11-6 Noise Calculations

Parameter | Description

onoise Total output noise.

[Equivalent current due to thermal, shot, or flicker noise.

Z Equivalent transimpedance, between noise source and output.

n Number of noise sources, associated with all resistors, MOSFETSs, diodes,
JFETs, and BJTs.

The input noise (inoise) voltage is the total output noise, divided by
the gain or transfer function of the circuit. HSPICE prints the
contribution of each noise generator in the circuit, for each inter

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-15

frequency point. The simulator also normalizes the output and input
noise levels, relative to the square root of the noise bandwidth. The

units are volts/Hz

1/2 1/2

or amps/Hz™'<.

To simulate flicker noise sources in the noise analysis, include
values for the KF and AF parameters, on the appropriate device
model statements. Use the .PRINT or .PLOT statement, to print or
plot output noise, and the equivalent input noise.

If you specify more than one .NOISE statement in a single
simulation, HSPICE runs only the last statement.

.SAMPLE Statement — Noise Folding Analysis

To acquire data from analog signals, use the .SAMPLE statement,
with the .NOISE and .AC statements, to analyze data sampling
noise in HSPICE. The SAMPLE analysis performs a noise-folding
analysis, at the output node.

SYNTAX:

.SAMPLE FS = freq <TQL
+ <MAXFLD = val > <BETA

val > <NUMF = val >
val >

Table 11-7 .SAMPLE Syntax

Parameter | Description

FS = freq Sample frequency, in Hertz.

TOL Sampling-error tolerance: the ratio of the noise power (in the highest folding
interval) to the noise power (in baseband). Default = 1. Oe- 3.

NUMF Maximum number of frequencies that you can specify. The algorithm
requires about ten times this number of internally-generated frequencies, so
keep this value small. Default = 100.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements

11-16

Table 11-7 .SAMPLE Syntax

MAXFLD Maximum number of folding intervals (default = 10. 0). The highest
frequency (in Hertz) that you can specify is: FMAX = MAXFLD [FS

BETA Optional noise integrator (duty cycle), at the sampling node:
BETA=0 no integrator
BETA=1 simple integrator (default)

If you clock the integrator (integrates during a fraction of the 1/FS sampling
interval), then set BETA to the duty cycle of the integrator.

NET Statement - AC Network Analysis

You can use the .NET statement to compute parameters for:
e Zimpedance matrix.

e Y admittance matrix.

* H hybrid matrix

e S scattering matrix.

HSPICE also computes:

* Input impedance.

e Output impedance.

« Admittance.

This analysis is part of AC small-signal analysis. To run network
analysis, specify the frequency sweep for the AC statement.

SYNTAX:

One-Port Network

. NET input <RIN = val >
. NET i nput <val >

Two-Port Network
. NET out put input <ROUT = val > <RIN = val >

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-17

Table 11-8 .NET Syntax
Parameter | Description
input Name of the voltage or current source for AC input.
output Output port. It can be:
» An output voltage, V(n1,n2).
» An output current, I(source), or I(element).
RIN Keyword, for input or source resistance. RIN calculates output impedance, output
admittance, and scattering parameters. The default RIN value is 1 ohm.
ROUT Keyword, for output or load resistance. ROUT calculates input impedance,
admittance, and scattering parameters. Default=1 ohm.
EXAMPLE:

One-Port Network

. NET VI NAC RIN = 50

. NET 1N RIN = 50

Two-Port Network

.NET V(10,30) VINAC ROUT = 75RIN = 50
.NET | (RX) VI NAC ROUT = 75RIN = 50

AC Network Analysis - Output Specification
Xij(z), ZIN(z), ZQUT(z), YIN(z), YQUT(z)

Table 11-9 AC Network Analysis Output
Parameter | Description
X In HSPICE, can be Z (impedance), Y (admittance), H (hybrid), or S (scattering).
ij i and j identify the matrix parameter to print in HSPICE. Value can be 1 or 2.
Use with the X value above (for example, Sij, Zij, Yij, or Hij).
ZIN Input impedance. For the one-port network, ZIN, Z11, and H11 are the same.
ZOUT Output impedance.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements

11-18

Table 11-9

AC Network Analysis Output (Continued)

Parameter

Description

z

Output type (HSPICE):

« R:real part.

e |:imaginary part.

e M: magnitude.

e P:phase.

» DB: decibel.

e T: group time delay.

YIN

Input admittance. For a one-port network, YIN is the same as Y11.

YOUT

Output admittance.

If you omit z, output includes the magnitude of the output variable.
The output of AC Analysis includes voltages and currents.

EXAMPLE:

.PRINT AC Z11(R) Z12(R) Y21(l1) Y22 S11 S11(DB) Z11(T)
.PRINT AC ZIN(R) ZIN(1) YOUT(M YOUT(P) HL1(M H11(T)
.PLOT AC S22(M S22(P) S21(R) H21(P) H12(R) S22(T)

Bandpass Netlist:* Network Analysis Results

*FILE: FBP_1. SP
. OPTI ON DCSTEP = 1 POST
*BAND PASS FI LTER

C1
L1

zZ

3. 166PF
203NH

3. 76PF
1. 75PF
9. 1PF
36. 81NH
1. 07PF
3. 13PF
233. 17NH
5. 92PF
4. 51PF
1. 568PF
8. 866PF
35. 71NH

COCON~NOUGITUOR_DMDMWWN —
CQOWO~NOOOUIOOR~OWN

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-19

Cl1 8 9 2. 06PF

C12 9 0 4. 3PF

L5 9 10 200. 97NH
C13 10 Qur 2. 97PF

RX ouT 0 1E14
VI N I'N 0 AC 1

.AC LIN 41 200MEG 300MEG

.NET V(OUT) VIN ROUT = 50 RIN = 50

.PLOT AC S11(DB) (-50,10) S11(P) (- 180, 180)
.PLOT AC ZIN(M (5, 130) ZIN(P) (-90, 90)

. END

Figure 11-4 S11 Magnitude and Phase Plots

BAND-PASS NETLIST: HSPICE NETWORK ANALYSIS RESULTS
14-0CT92 11:17:39

=Y

1000

N D FBPL.ACO
5 - T ostit(D8
1 - -
| 10.0 = T
L - -
I 200 S
N - z
30.0 = =
400 T T
179 141 = - FBPL.ACO
5 - © ST1CPHASE
1 — L
| 1000~ -
L -
I O
N -

I i I I I i I I I i I I I I I
175.886 PR 0% PO 0X PB00X P8O 0X
200 0X HERTZ (LIN) 300 0X

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-20

Figure 11-5 ZIN Magnitude and Phase Plots

= — = — ™~

= — = — ™~

BAND-PASS NETLIST: HSPICE NETWORK ANALYSIS RESULTS

14-0CT92 11:17139
2 FBP1.ACO
ted 0 - C ZINCHAG
100 0=
80 0~
60 0=
40 0
2007
30.0C = FBPI . ACO
< ZIN(PHASE
- -
50 0
-
S50 0
7 I I I ‘ I I I ‘ I I I ‘ I I I]
900 P20 0X 240 X 260 0X 280 0X
200 0X HERTZ (LIN) 300 0X

NETWORK Variable Specification

HSPICE uses the AC analysis results to perform network analysis.
The .NET statement defines Z, Y, H, and S parameters to calculate.
The following list shows various combinations of the .NET
statement, for network matrices that HSPICE calculates:

. NET Vout Isrc Vv = [Z [I]
.NET lout Vsrc I = [Y] [V
.NET lout Isrc [VI12]T = [H[11 VT
.NET Vout Vsrc [11V2]T = [S[vi112]T

([I\/]T represents the transpose of the Mmatrix).

Note:

The preceding list does not mean that you must use
combination (1) to calculate Z parameters. However, if you
specify .NET Vout Isrc, HSPICE i evaluates the Z matrix
parameters. It then uses standard conversion equations, to
determine S parameters or any other requested parameters.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-21

Figure 11-6 shows the importance of variables in the .NET
statement. Here, Isrc and Vce are the DC biases, applied to the BJT.

Figure 11-6 Parameters with .NET V(2) Isrc

= m = == ===

Vece

RO x

This .NET statement provides an incorrect result for the Z parameter
calculation:

.NET V(2) Isrc

When HSPICE runs AC analysis, it shorts all DC voltage sources; all
DC current sources are open-circuited. As a result, V(2) shorts to
ground, and its value is zero in AC analysis. This affects the results
of the network analysis.

In this example, HSPICE attempts to calculate the Z parameters
(Z11 and Z21), defined as Z11 = V1/I1 and Z21 = V2/11 with 12=0.
The above example does not satisfy the requirement that 12 must be
zero. Instead, V2 is zero, which results in incorrect values for Z11
and Z21.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-22

Figure 11-7 shows the correct biasing configurations, for performing
network analysis for the Z, Y, H, and S parameters.

Figure 11-7 Network Parameter Configurations

Fr——a_2 C r—=a2 ¢
| | I I
|1 | |+ Il I [|+
w1 Tv2®e L1 v, @ veE
T | N |
L — — 1L L — — 1L
Z -parameter: .NET V(C) IB Y-parameter: .NET I(Vc) VBE
r——al2 ¢ r—=—al I
| | I I
l1 | | 1 | |
‘ + + |
L1 Tve @veE LTy, 2
IB vy | | VBRY) V% | |
T ! '
L — — 1L L——1-L
H-parameter: .NET I(Vc) IB S-parameter: .NET V(C) VBE
EXAMPLE:

To calculate the H parameters, HSPICE uses the .NET statement.
CNET 1(Vo g

VC denotes the voltage at the C node, which is the collector of the
BJT. With this statement, HSPICE uses the following equations to
calculate H parameters, immediately after AC analysis:

V1 =H1101+H12 W2
12 = H21 01 +H22 W2

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-23

To calculate Hybrid parameters (H11 and H21), the DC voltage
source (V) sets V2 to zero, and the DC current source (IB) sets I1

to zero. Setting I1 and V2 to zero, precisely meets the conditions of
the circuit under examination: the input current source is open-
circuited, and the output voltage source shorts to ground.

A data file, containing measured results, can drive external DC
biases applied to a BJT. Not all DC currents and voltages (at input
and output ports) might be available. When you run a network
analysis, examine the circuit, and select suitable input and output
variables. This helps you to obtain correctly-calculated results. The
following example demonstrates HSPICE network analysis of a BJT.

Network Analysis Example: Bipolar Transistor

BJT network anal ysis
.option nopage |i st

+ newmol reli = le-5 absi = 1e-10 relv = le-5
+ relvdc = le-7 nonod post gmindc = le-12
. op

.paramvbe = 0ib =0ic =0 vce =0

$ H paraneter
.NET i(vc) ibb rin =50 rout = 50

ve e 0 0

i bb 0 b dc = 'ib" ac = 0.1
Ve (o 0 "vee’

gl C b e 0 bj t

.nmodel bjt npn subs =1

+ bf = 1.292755e+02 br = 8.379600e+00

+ is = 8.753000e-18 nf = 9.710631e-01

+ nr = 9.643484e-01 ise = 3.428000e-16
+ isc = 1.855000e-17 iss = 0.000000e+00
+ ne = 2.000000e+00 nc = 9. 460594e-01

+ ns = 1.000000e+00 vaf = 4.942130e+01
+ var = 4.589800e+00 i kf = 5.763400e-03
+ i kr = 5.000000e-03 irb = 8.002451e-07
+ rc = 1.216835e+02 rb = 1.786930e+04

+ rbm = 8.123460e+01 re = 2. 136400e+00
+ cje = 9.894950e-14 me = 4.567345e-01
+ vje = 1.090217e+00 cjc = 5.248670e-14

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-24

.print ac par(’'ib’) par(’ic’)
hi1l(m h12(m h21(m h22(m
z11(m z12(m z21(m z22(m
s1li(m s21(m s12(m) s22(m
yli(m y21(m yl2(m y22(m

.ac Dec 10 1e6 5g sweep data = bias

+ + + +

.data bias

vbe vce ib
771.5648m 292.5047m 1.2330u
797.2571m 323.9037m 2.6525u
821.3907m 848. 7848m 5.0275u
843. 5569m 1. 6596 8.4783u
864.2217m 2.4031 13. 0750u
884.3707m 2. 0850 19. 0950u
. enddat a
. end

+ mjc = 1.318637e-01 vjc = 5.184017e-01

+ XCcjCc = 6.720303e-01 cjs = 9.671580e-14

+ nmjs = 2.395731e-01 vjs = 5.000000e-01

+ tf = 3.319200e-11 itf = 1.457110e-02

+ xtf = 2.778660e+01 vtf = 1.157900e+00

+ ptf = 6.000000e-05 xti = 4.460500e+00

+ xtb = 1.456600e+00 eg = 1.153300e+00

+ tikfl = -5.397800e-03 tirbl = -1.071400e-03
+ trel = -1.121900e-02 trbl = 3.039900e- 03

+ trcl = -4.020700e-03 trnl = 0.000000e+00

1 C
126. 9400u
265. 0100u
486. 9900u
789. 9700u
1.1616m
1.5675m

Other possible biasing configurations, for the network analysis, are:

$S-parameter

.NET v(c) vbb rin = 50 rout = 50

ve e 0 0

vbb b 0 dc = 'vbe' ac
icc 0 c "ic’

gl c b e 0 bj t

AC Sweep and Small Signal Analysis: Other AC Analysis Statements

11-25

$Z-parameter

.NET v(c) ibb rin =50 rout = 50

ve e 0 0

i bb 0 b dc = 'ib’ ac = 0.1
icc 0 c "ic’

gl c b e 0 bj t

$Y- par anet er

.NET i(vc) vbb rin = 50 rout = 50

ve e 0 0

vbb b 0 "vbe’ ac = 0.1
Ve c 0 ‘vece'

gl c b e 0 bj t
References

1. Goyal, Ravender. “S-Parameter Output From SPICE Program”,
MSN & CT, February 1988, pp. 63 and 66.

AC Sweep and Small Signal Analysis: Other AC Analysis Statements
11-26

12

Statistical Analysis and Optimization

When you design an electrical circuit, it must meet tolerances for the
specific manufacturing process. The electrical yield is the number of
parts that meet the electrical test specifications. Overall process
efficiency requires maximum yield. To analyze and optimize the
yield, Synopsys HSPICE uses statistical techniques, and observes
the effects of variations in element and model parameters.

e Analytical Model Types

o Simulating Circuit and Model Temperatures
 Worst Case Analysis

 Monte Carlo Analysis

« Worst Case and Monte Carlo Sweep Example
e Optimization

* Optimization Examples

12-1

Analytical Model Types

To model parametric and statistical variation in circuit behavior, use:

The .PARAM statement investigates the performance of a circuit
as you change circuit parameters. See Simulation Input and
Controls on page 3-1, for details about the .PARAM statement.

Temperature Variation Analysis varies the circuit and component
temperatures, and compares the circuit responses. You can
study the temperature-dependent effects of the circuit, in detail.

Monte Carlo Analysis. If you know the statistical standard
deviations of component values, use this analysis to center a
design. This provides maximum process yield, and determines
component tolerances.

Worst Case Corners Analysis. If you know the component value
limit, use this analysis to automate quality assurance, for:

- Basic circuit function.

- Process extremes.

- Quick estimation of speed and power trade-offs.
- Best case and worst case model selection.

- Parameter corners.

- Library files.

Data-Driven Analysis. Use for cell characterization, response
surface, or Taguchi analysis. See “Characterizing Cells” in the
HSPICE Applications Manual. Automates characterization of
cells, and calculates the coefficient of polynomial delay for timing
simulation. You can simultaneously vary any number of
parameters, and perform an unlimited number of analyses. This
analysis uses ASCII file format, so HSPICE can automatically
generate parameter values. This analysis can replace hundreds
or thousands of HSPICE simulation runs.

Statistical Analysis and Optimization: Analytical Model Types

12-2

Use yield analyses to modify:

« DC operating points.
« DC sweeps.

« AC sweeps.

« Transient analysis.

These analyses can generate scatter plots, for operating point
analysis. They can also generate a family of curve plots for DC, AC,
and transient analysis.

Use the .MEASURE statement, with yield analyses, to view
distributions of delay times, power, or any other characteristic
described in a .MEASURE statement. Often, this is more useful than
viewing a family of curves, that a Monte Carlo analysis generates.

When you use the .MEASURE statement, HSPICE generates a
table of results, in an .mt# file. You can read this file in ASCII format,
and you can use AvanWaves to display it. Also, if you

use .MEASURE statements in a Monte Carlo or data-driven
analysis, then the HSPICE output file includes calculations for
standard statistical descriptors:

+Xnt+ ...+
Xq+ X+ .. +X

n
Mean =
N
(xl—Mean)2 + ...(xn —Mean)2
Variance =
N-1
Sigma = .Variance

‘xl—Mean‘ + ...+ ‘xn—Mean

Average Deviation
g N_1

Statistical Analysis and Optimization: Analytical Model Types
12-3

Simulating Circuit and Model Temperatures

Temperature affects all electrical circuits. Figure 12-1 shows the key
temperature parameters, associated with circuit simulation:

» Model reference temperature — you can model different models
at different temperatures. Each model has a TREF (temperature
reference) parameter.

* Element junction temperature — each resistor, transistor, or other
element generates heat, so an elementis hotter than the ambient
temperature.

« Part temperature — at the system level, each part has its own
temperature.

» System temperature — a collection of parts form a system, which
has a local temperature.

« Ambient temperature — the ambient temperature is the air
temperature of the system.

Statistical Analysis and Optimization: Simulating Circuit and Model Temperatures

12-4

Figure 12-1 Part Junction Temperature Sets System Performance

—>

Ambient Temperature

System Temperature Part Temperature
source drain source drain
gate gate
I— - s I—
Model Junction Temperature Part Junction Temperature

HSPICE calculates temperatures as differences from the ambient
temperature:
Tambient + Asystem + Apart + Ajunction = Tjunction
lds = f(Tjunction, Tmodel)
Every element includes a DTEMP keyword, which defines the
difference between junction and ambient temperature.
EXAMPLE:

The following example uses DTEMP in a MOSFET element
statement:

ML drain gate source bul k Model _name W:10u
+ L=1u DTEMP=+20

Statistical Analysis and Optimization: Simulating Circuit and Model Temperatures
12-5

Temperature Analysis

You can specify three temperatures:

Model reference temperature, specified in a .MODEL statement.
The temperature parameter is usually TREF, but can be TEMP or
TNOM in some models. This parameter specifies the
temperature, in °C, at which HSPICE measures and extracts the
model parameters. Set the value of TNOM in a .OPTION
statement. Its default value is 25 °C.

Circuit temperature, which you specify using a .TEMP statement
or the TEMP parameter. This is the temperature, in °C, at which
HSPICE simulates all elements. To modify the temperature for a
particular element, use the DTEMP parameter. The default circuit
temperature is the value of TNOM.

Individual element temperature, which is the circuit temperature,
plus an optional amount that you specify in the DTEMP
parameter.

To specify the temperature of a circuit in a simulation run, use either
the .TEMP statement, or the TEMP parameter in the .DC, .AC,

or .TRAN statements. HSPICE compares the circuit simulation
temperature that one of these statements sets, against the reference
temperature that the TNOM option sets. TNOM defaults to 25 °C,
unless you use the SPICE option, which defaults to 27 °C. To
calculate the derating of component values and model parameters,
HSPICE uses the difference between the circuit simulation
temperature, and the TNOM reference temperature.

Statistical Analysis and Optimization: Simulating Circuit and Model Temperatures

12-6

Elements and models within a circuit can operate at different
temperatures. For example, a high-speed input/output buffer, that
switches at 50 MHz, is much hotter than a low-drive NAND gate, that
switches at 1 MHz). To simulate this temperature difference, specify
both an element temperature parameter (DTEMP), and a model
reference parameter (TREF). If you specify DTEMP in an element
statement, the element temperature for the simulation is:

el emrent tenperature = circuit tenperature + DTEMP

Specify the DTEMP value in the element statement (resistor,
capacitor, inductor, diode, BJT, JFET, or MOSFET statement).
Assign a parameter to DTEMP, then use the .DC statement to sweep
the parameter. The DTEMP value defaults to zero.

If you specify TREF in the model statement, the model reference
temperature changes (TREF overrides TNOM). Derating the model
parameters is based on the difference between circuit simulator
temperature, and TREF (instead of TNOM).

.TEMP Statement

To specify the temperature of a circuit for a HSPICE simulation, use
the .TEMP statement. See .TEMP Statement on page 3-22.

Worst Case Analysis

You can use Worst Case analysis (.wcase statement) when you
design and analyze MOS and BJT IC circuits in HSPICE. To simulate
the worst case, HSPICE sets all variables to their 2-sigma or 3-sigma
worst case values. Because several independent variables rarely
attain their worst-case values simultaneously, this technique tends to
be overly pessimistic, and can lead to over-designing the circuit.
However, this analysis is useful as a fast check.

Statistical Analysis and Optimization: Worst Case Analysis
12-7

Model Skew Parameters

The Synopsys True-Hspice Device Models include physically-
measurable model parameters. The circuit simulator uses parameter
variations, to predict how an actual circuit responds to extremes in
the manufacturing process. Physically-measurable model
parameters are called skew parameters, because they skew from a
statistical mean, to obtain predicted performance variations.

Examples of skew parameters are the difference between the drawn
and physical dimension of metal, polysilicon, or active layers, on an
integrated circuit.

Generally, you specify skew parameters independently of each
other, so you can use combinations of skew parameters to represent
worst cases. Typical skew parameters for CMOS technology include:

« XL — polysilicon CD (critical dimension of the poly layer,
representing the difference between drawn and actual size).

« XW,, XW, — active CD (critical dimension of the active layer,
representing the difference between drawn and actual size).

« TOX —thickness of the gate oxide.

* RSHj, RSH, —resistivity of the active layer.

DELVTO,, DELVTO,— variation in threshold voltage.

You can use these parameters in any level of MOS model, within the
True-Hspice device models. The DELVTO parameter shifts the
threshold value. HSPICE adds this value to VTO for the Level 3
model, and adds or subtracts it from VFBO for the BSIM model.
Table 12-1 on page 12-9 shows whether HSPICE adds or subtracts
deviations from the average.

Statistical Analysis and Optimization: Worst Case Analysis

12-8

Table 12-1 Sigma Deviations

Type

Param

Slow

Fast

NMOS

XL

+

RSH

+

DELVTO

TOX

XwW

PMOS

XL

RSH

DELVTO

TOX

XW

+

HSPICE selects skew parameters, based on the available historical
data that it collects, either during fabrication or electrical test. For

example, HSPICE collects the XL skew parameter, for poly CD,

during fabrication. This parameter is usually the mostimportant skew
parameter fora MOS process. Figure 12-2 is an example of data that
historical records produce.

Figure 12-2 Historical Records for Skew Parameters in a MOS Process

Fab Database
Run# PolyCD

101 +0.04u
102 -0.06u
103 +0.03u

pop.#

—— 3 sigma

— 2 sigma

1 sigma

r Mean

XL value

Statistical Analysis and Optimization: Worst Case Analysis

12-9

Using Skew Parameters in HSPICE

Figure 12-3 shows how to create a worst-case, corners library file,
for a CMOS process model in HSPICE. Specify the physically-
measured parameter variations, so that their proper minimum and
maximum values are consistent with measured current (IDS)
variations. For example, HSPICE can generate a 3-sigma variation
in IDS, from a 2-sigma variation in physically-measured parameters.

Figure 12-3 Worst Case Corners Library File for a CMOS Process Model

SS Slow Corner Skew Parameters

EE Extracted Skew Parameters

TT Typical Corner Skew Parameters + Gaussian

FF Fast Corner Skew Parameters

pop. /

IDS

The .LIB (library) statement, and the .INCLUDE (include file)
statement, access the models and skew. The library contains
parameters that modify .MODEL statements. The following example
of .LIB, using model skew parameters, features both worst-case and
statistical-distribution data. In statistical distribution, the median
value is the default for all non-Monte Carlo analysis.

Statistical Analysis and Optimization: Worst Case Analysis

12-10

EXAMPLE:

.LIBTT

$TYPI CAL P- CHANNEL AND N- CHANNEL CMOS LI BRARY DATE: 3/ 4/91
$ PROCESS: 1.0U CMOS, FAB22, STATI STI CS COLLECTED 3/ 90-2/91
$ following distributions are 3 sigma ABSOLUTE GAUSSI AN

. PARAM

$ polysilicon Critical D nensions

+ pol ycd=agauss(0, 0. 06u, 1) x| =" pol ycd-si gma*0. 06u’

$ Active layer Critical Dinensions

+ nact cd=agauss(0, 0. 3u, 1) xwn=" nact cd+si gma*0. 3u’

+ pact cd=agauss(0, 0. 3u, 1) xwp=' pact cd+si gnma*0. 3u’

$ Gate Oxide Critical Dinensions (200 angstrom+/- 10a at 1
$ sigm)

+ t oxcd=agauss(200, 10, 1) tox="toxcd-si gma*10’

Threshol d vol tage vari ation
vt oncd=agauss(0, 0. 05v, 1) del vt on=" vt oncd-si gma*0. 05’
vt opcd=agauss(0, 0. 05v, 1) del vt op=" vt opcd+si gma*0. 05’

+ + &

.INC ‘/usr/nmetal/lib/cnosl nod.dat’ $ nodel include file

.ENDL TT
.LIB FF
$HI GH GAIN P-CH AND N-CH CMOS LI BRARY 3SI GVA VALUES

. PARAM TOX=230 XL=-0.18u DELVTON=-. 15V DELVTOP= 0. 15V
.INC ‘/usr/nmetal/lib/cnosl nod.dat’ $ nodel include file

. ENDL FF

The /usr/meta/lib/cmos1l_mod.dat include file contains the model.

. MODEL NCH NMOS LEVEL=2 XL=XL TOX=TOX DELVTO=DELVTON .
. MODEL PCH PMOS LEVEL=2 XL=XL TOX=TOX DELVTO=DELVTOP .

Note: The model keyname (left side) equates to the skew parameter
(right side). Model keynames and skew parameters can use
the same names.

Statistical Analysis and Optimization: Worst Case Analysis
12-11

Skew File Interface to Device Models

Skew parameters are model parameters, for transistor models or
passive components. A typical device model set includes:

MOSFET models, for all device sizes, using an automatic model
selector.

RC wire models, for polysilicon, metall, and metal2 layers, in the
drawn dimension.Models include temperature coefficients and
fringe capacitance.

Single-diode, and distributed-diode models, for N+, P+, and well
(includes temperature, leakage, and capacitance, based on the
drawn dimension).

BJT models, for parasitic bipolar transistors. You can also use
these for any special BJTs, such as a BICMOS for ECL BJT
process (includes current and capacitance as a function of
temperature).

Metall and metal2 transmission line models, for long metal lines.

Models must accept elements. Sizes are based on a drawn
dimension. If you draw a cell at 2 p dimension, and shrink it to 1
U, the physical size is 0.9 u. The effective electrical size is 0.8 p.
Account for the four dimension levels:

drawn size
shrunken size
physical size
electrical size

Most simulator models scale directly from drawn to electrical size.
True-Hspice MOS models support all four size levels, as explained
in Figure 12-4 on page 12-13.

Statistical Analysis and Optimization: Worst Case Analysis

12-12

Figure 12-4 Device Model from Drawn to Electrical Size

Drawn Size Shrunken Size
LG — o ¥
2m LMLT [aama] 4 1M
anna] g VLT ¢
XL
XW
Electrical Size Physical Size
source drain source drain
gate gate
| I— LD I—
WD — > -
—> -
0.8m 0.9 m

Monte Carlo Analysis

Monte Carlo analysis uses a random number generator, to create the

following types of functions.

Functions

Gaussian Parameter Distribution
* Relative variation—variation is a ratio of the average.

» Absolute variation—adds variation to the average.

« Bimodal-multiplies distribution, to statistically reduce nominal

parameters.

Statistical Analysis and Optimization: Monte Carlo Analysis

Uniform Parameter Distribution

* Relative variation—variation is a ratio of the average.

» Absolute variation—adds variation to the average.

« Bimodal-multiplies distribution, to statistically reduce nominal

parameters.

Random Limit Parameter Distribution

» Absolute variation—adds variation to the average.
* Monte Carlo analysis randomly selects the min or max variation.

The value of the MONTE analysis keyword determines how many
times to perform operating point, DC sweep, AC sweep, or transient
analysis.

Monte Carlo Setup

To set up a Monte Carlo analysis, use the following HSPICE
statements:

 .PARAM statement—sets a model or element parameter, to a
Gaussian, Uniform, or Limit function distribution.

« .DC, .AC, or . TRAN analysis—enables MONTE.

« .MEASURE statement—calculates the output mean, variance,
sigma, and standard deviation.
SYNTAX:

Select the type of analysis to run, such as operating point, DC
sweep, AC sweep, or TRAN sweep.

Statistical Analysis and Optimization: Monte Carlo Analysis

12-14

Operating Point

. DC MONTE=val

DC Sweep

.DCvin 15 .25 SWEEP MONTE=val
AC Sweep

.AC dec 10 100 10neg SWEEP MONTE=val
TRAN Sweep

. TRAN 1n 10n SWEEP MONTE=val

The val value specifies the number of Monte Carlo iterations to
perform. A reasonable number is 30. The statistical significance of
30 iterations is quite high. If the circuit operates correctly for all 30
iterations, there is a 99% probability that over 80% of all possible
component values operate correctly. The relative error of a quantity,

determined through Monte Carlo analysis, is proportional to val'l/2,

Monte Carlo Output

« .MEASURE statements are the most convenient way to
summarize the results.

« .PRINT statements generate tabular results, and print the values
of all Monte Carlo parameters.

If one iteration is out of specification, you can obtain the
component values from the tabular listing. A detailed
resimulation of that iteration might help identify the problem.

 .GRAPH generates a high-resolution plot for each iteration.

By contrast, AvanWaves superimposes all iterations as a single
plot, so you can analyze each iteration individually.

Statistical Analysis and Optimization: Monte Carlo Analysis
12-15

.PARAM Distribution Function

You can assign a .PARAM parameter to the keywords of elements
and models, and assign a distribution function to each .PARAM
parameter. HSPICE recalculates the distribution function each time
that and element or model keyword uses a parameter. When you use
this feature, Monte Carlo analysis can use a parameterized
schematic netlist, without additional modifications.

SYNTAX:

. PARAM xx=UNI F(nom nal _val, rel variation
+ <, multiplier>)

. PARAM XX=AUNI F(nhom nal _val , abs_variation <,
+ mul tiplier>)

. PARAM xx=GAUSS(nom nal _val, rel variation, sigm <,
+ multiplier>)

. PARAM xx=AGAUSS(nom nal _val, abs_variation, sigm <,
+ mul tiplier>)

. PARAM xx=LI M T(nom nal _val, abs_vari ation)

Table 12-2 .PARAM Syntax

Parameter Description

XX Distribution function calculates the value of this parameter.

UNIF Uniform distribution function, using relative variation.

AUNIF Uniform distribution function, using absolute variation.

GAUSS Gaussian distribution function, using relative variation.

AGAUSS Gaussian distribution function, using absolute variation

LIMIT Randome-limit distribution function, using absolute variation. Adds +/-
abs_variation to nominal_val, based on whether the random outcome of a -1
to 1 distribution is greater than or less than 0.

nominal_val Nominal value in Monte Carlo analysis and default value in all other analyses.

Statistical Analysis and Optimization: Monte Carlo Analysis

12-16

Table 12-2

.PARAM Syntax (Continued)

Parameter

Description

abs_variation

AUNIF and AGAUSS vary the nominal_val, by +/- abs_variation.

rel_variation

UNIF and GAUSS vary the nominal_val, by +/- (nominal_val [rel_variation).

sigma

Specifies abs_variation or rel_variation at the sigma level. For example, if
sigma=3, then the standard deviation is abs_variation divided by 3.

multiplier

If you do not specify a multiplier, the default is 1. HSPICE recalculates many
times, and saves the largest deviation. The resulting parameter value might
be greater than or less than nominal_val. The resulting distribution is bimodal.

Figure 12-5

Monte Carlo Distribution

Population

Gaussian Distribution Uniform Distribution

Population

3 Sigma

Abs_vanalion Al _varation
B B N il

Nom_value Nom_vaiua

Rel_variation=Abs_variation/Nom_value

Mo

nte Carlo Parameter Distribution

Each time you use a parameter, Monte Carlo calculates a new
random variable.

If you do not specify a Monte Carlo distribution, then HSPICE
assumes the nominal value.

If you specify a Monte Carlo distribution for only one analysis,
HSPICE uses the nominal value for all other analyses.

Statistical Analysis and Optimization: Monte Carlo Analysis
12-17

You can assign a Monte Carlo distribution to all elements that share
a common model. The actual element value varies, according to the
element distribution. If you assign a Monte Carlo distribution to a
model keyword, then all elements that share the model, use the
same keyword value. You can use this feature to create double
element and model distributions.

For example, the MOSFET channel length varies from transistor to
transistor, by a small amount that corresponds to the die distribution.
The die distribution is responsible for offset voltages in operational
amplifiers, and for the tendency of flip-flops to settle into random
states. However, all transistors on a die site vary, according to the
wafer or fabrication run distribution. This value is much larger than
the die distribution, but affects all transistors the same way. You can
specify the wafer distribution in the MOSFET model, to set the speed
and power dissipation characteristics.

Monte Carlo Examples

Gaussian, Uniform, and Limit Functions

Test of nonte carlo gaussian, uniform and limt functions
. OPTI ON post

.dc nont e=60

* setup plots

.model histo plot ym n=80 ymax=120 freq=1

. graph nodel =HI STO auni f _1=v(aul)

. graph nodel =HI STO auni f _10=v(aul0)

. graph nodel =HI STO agauss_1=v(agl)

. graph nodel =H STO agauss_10=v(agl0)

. graph nodel =HI STO i mit=v(L1)

* uniformdistribution relative variation +/- .2
. paramru_21=uni f (100, .2)

lul ul 0 -1

rul ul O ru_1

Statistical Analysis and Optimization: Monte Carlo Analysis
12-18

* absol ute uniformdistribution absolute variation +/- 20

* single throw and 10 throw maxi num
. param rau_1=auni f (100, 20)
. param rau_10=auni f (100, 20, 10)

laul aul 0 -1

raul aul O rau_l
laul0 aul0 0 -1
raul0 aulO O rau_10

gaussi an distribution relative variation +/- .2
* at 3 sigm
. param rg_1=gauss(100, .2, 3)
lgl gl 0-1
rgl g1 0 rg_1

* absol ute gaussian distribution absolute variation +/-
* at 3 sigma

* single throw and 10 throw maxi mum

. param rag_1l=agauss(100, 20, 3)

. param rag_10=agauss(100, 20, 3, 10)

lagl agl 0 -1

ragl agl O rag_1

lagl0 agl0 0 -1

raglo aglo O rag_10

* randomlimt distribution absolute variation +/- 20
. param RL=l i m t (100, 20)

L1 L1 0 -1
rL1 L1 O RL
.end

Figure 12-6 Gaussian Functions

Z—r A D<

Z—r HrD<

oo}
o

.2

MONT1 . SP TEST OF MONTE CARLO GAUSSTIAN. UNIFORM. AND LIMIT FUNCTIONS
15-0CcT92 9:56:58
119 18682 = o AN =
- A A A N - ONT1 SWo
A & A A A = AA A 2 AUNIF 1
= CoahYnNtr -t
110.0 — “ : - AN N o AT -
S : : ' N -
- & A & -
100.0 — A . R o A=
- A a0 A A
- as N N & Az
s0.0 = - AT A A o A A =
- AL o A oA A
1364 NN PNEREN PN A N h
. N B
teo. o0& A AL VNN &8 a8 ss an A APA D MONTL . SWO
- JaVAN PaN z AUNIF _1o0
— - SN
. A
110.0 = : : - -
too0.0 T L —
s0.0 = o =
AN N BN A -
} . . . A=
6o oaoe A A TAMEL LT %A 0 B4 aa AT 218 AL 21 s o C7H
10 .0 20 0 30 0 40 .0 50 .0
1.0 MONTE _CARLO (LIND 50 .0

Statistical Analysis and Optimization: Monte Carlo Analysis

12-19

Figure 12-7 Uniform Functions

MONT! .SP TEST OF MONTE CARLO GAUSSIAN. UNIFORM. AND LIMIT FUNCTIONS
15-0CT9¢2 9:56:568

>

E S MONTH
v 115 .0 = - — AGAUS
0 - ‘ A -
L 110 0= o o A - =
105 0= A : as A A BA A A=
L VNN AS A A A A A N
EANUN T JAVAN A As - AN A =
I 100 0E A A A A A A A -
N AN A A JASEEUN A S A
95 0 o A
= NECAA
30 0= A Co A C =
= I ‘ I ‘ I I I ‘ A ‘ :'
- A -
118.375 = A A . ‘ AA 2 MoNT
v YN SN A A AL
0 1o 08 A N NN N : A
L UA A N a -
T - -
L too 0= -
! . A
§ VN NN A A B
30 0= A A B Ap A s KA
- A A JANRVAN AN
- A s ‘ A A ‘ £
- | | | | | | | | AN | | | N | | b
80.3338 100 20 .0 300 400 50.0
Lo MONTE _CARLO (LIN) 60 0
Figure 12-8 Limit Functions
MONT1 SP TEST OF MONTE CARLO 6AUSSTAN. UNIFORM. AND LIMIT FUNCTIONS
15-0CT92 9:56:58
120 0= CAMAAL L AMAA A ALMMAAA T A A AA A AN AA =
- - LIM
115 0 = -
110.0 = o
v - -
0 _ -
L 105 0 = -
T - -
L _ _
I 100 07 ,‘
N - -
35 0 — -
30 0 — - =
85 0 = -
B0 0OAAA T AAA 1 AN AAA A T ANTAAN AAN CANANN AN A AN A AALA
: 100 200 30 ¢ 400 500
1o MONTE _CARLO CLIN) 60 0

Statistical Analysis and Optimization: Monte Carlo Analysis
12-20

|

—
-

Major and Minor Distribution

In MOS IC processes, manufacturing tolerance parameters have
both a major and a minor statistical distribution.

« The major distribution is the wafer-to-wafer and run-to-run
variation. It determines electrical yield.

« The minor distribution is the transistor-to-transistor process
variation. It is responsible for critical second-order effects, such
as amplifier offset voltage and flip-flop preference.

Figure 12-9 Major and Minor Distribution of Manufacturing Variations
major distribution

\ minor distribution
pop.# /

XL
(polysilicon linewidth variation)

The example below is a Monte Carlo analysis of a DC sweep, in
HSPICE. Monte Carlo sweeps the VDD supply voltage, from 4.5
volts to 5.5 volts.

File: MONDC_A. SP

.DC VDD 4.5 5.5 .1 SWEEP MONTE=30

. PARAM LENGTH=1U LPHOTC=. 1U

. PARAM LEFF=GAUSS (LENGTH, .05, 3)

+ XPHOTO=GAUSS (LPHOTO, .3, 3)

. PARAM PHOTO=XPHOTO
ML 1 2 GND G\ND NCH WF10U L=LEFF
M 12 VDD VDD PCH W-20U L=LEFF
M3 2 3 GND GND NCH WF10U L=LEFF
M4 2 3 VDD VDD PCH W£20U L=LEFF

. MODEL NCH NMOS LEVEL=2 UO=500 TOX=100 GAMMVA=.7 VTOC-=. 8
+ XL=PHOTO

. MODEL PCH PMOS LEVEL=2 UO=250 TOX=100 GAMVA=.5 VTO=-.8
+ XL=PHOTO

. | NC Mbdel . dat

. END

Statistical Analysis and Optimization: Monte Carlo Analysis
12-21

 The M1 through M4 transistors form two inverters.

* The nominal value of the LENGTH parameter sets the channel
lengths for the MOSFETS, which are set to 1u in this example.

» All transistors are on the same integrated circuit die. The LEFF
parameter specifies the distribution—for example, a +5%
distribution in channel length variation, at the +3-sigma level.

 Each MOSFET has an independent random Gaussian value.

The PHOTO parameter controls the difference between the physical
gate length and the drawn gate length. Because both n-channel and p-
channel transistors use the same layer for the gates, Monte Carlo
analysis sets XPHOTO distribution to the PHOTO local parameter.

XPHOTO controls PHOTO lithography, for both NMOS and PMOS
devices, which is consistent with the physics of manufacturing.

RC Time Constant

This simple example shows uniform distribution, for resistance and
capacitance. It also shows the resulting transient waveforms, for 10
different random values.

*FI LE: MONL. SP W TH UNI FORM DI STRI BUTI ON
. OPTI ON LI ST POST=2

.PARAM RX=UNI F(1, .5) CX=UNIF(1, .5)
.TRAN .1 1 SWEEP MONTE=10

AC11

Rl 10 RX
Cl10 CX
. END

Statistical Analysis and Optimization: Monte Carlo Analysis

12-22

Figure 12-10 Monte Carlo Analysis of RC Time Constant

xFILED MONL . SP WITH UNIFORM DISTRIBUTION
15-0CT92 10:43:22

992 750M - MON1 TRO
\\ .
— N\ B Z%
900.0M — - -
8O0 OM — C
v , -
0 _ _
L - -
T 700.0M — S
L - -
[- -
N 600 UM: 1
- A 9
500 OM — - 8
400.0M — 4
. ‘ g
N\
- ' A
300 0M — ' ' o ' o o ' B
- ‘ | | ‘ | | ‘ | | ‘ | | A 1
200 . 0M 400 . 0M 600 . 0M 800 . 0M
0 TIME (LIND 1.0

Switched Capacitor Filter Design

Capacitors, used in switched-capacitor filters, consist of parallel
connections of a basic cell. Use Monte Carlo techniques in HSPICE
to estimate the variation in total capacitance. The capacitance
calculation uses two distributions:

« Minor (element) distribution of cell capacitance, from cell-to-cell,
on a single die.

« Major (model) distribution of the capacitance, from wafer-to-
wafer, or from manufacturing run-to-run.

Statistical Analysis and Optimization: Monte Carlo Analysis
12-23

Figure 12-11 Monte Carlo Distribution

cap-to-cap
(element)

\ Cla Clb

—

Clc Cid

k run-to-run
A (model)

You can approach this problem from physical or electrical levels.

» The physical level relies on physical distributions, such as oxide
thickness and polysilicon line width control.

» The electrical level relies on actual capacitor measurements.
Physical Approach
1. Oxide thickness control is excellent for small areas on a single

wafer. Therefore, you can use a local variation in polysilicon to
control the variation in capacitance, for adjacent cells.

2. Next, define a local poly line-width variation, and a global (model-
level) poly line-width variation. In this example:

- The local polysilicon linewidth control for a line 10 p wide,
manufactured with process A, is £0.02 y, for a 1-sigma
distribution.

- The global (model level) polysilicon line-width control is much
wider; use 0.1 u for this example.

3. The global oxide thickness is 200 angstroms, with a +5 angstrom
variation at 1 sigma.

4. The cap element is square, with local poly variation in both
directions.

Statistical Analysis and Optimization: Monte Carlo Analysis
12-24

5. The cap model has two distributions:
- poly line-width distribution
- oxide thickness distribution.
The effective length is:
Leff = Ldrawn - 2 [DEL
The model poly distribution is half the physical per-side values:

Cla 1 0 CMOD WEELPOLY L=ELPCLY

Clb 1 0 CMOD WEELPOLY L=ELPCLY

ClC 1 0 CMOD WEELPOLY L=ELPCLY

ClD 1 0 CMOD WEELPOLY L=ELPCLY

$ 10U PCOLYW DTH, 0. 05U=1SI GVA

$ CAP MODEL USES 2* MODPOLY .05u= 1 sigma
$ Sangstrom oxi de thickness AT 1SI GVA

. PARAM ELPOLY=AGAUSS(10U, 0. 02U, 1)

+ MODPOLY=AGAUSS(0, . 05U, 1)

+ POLYCAP=AGAUSS(200e- 10, 5e- 10, 1)

. MODEL CMOD C THI CK=PCLYCAP DEL=MODPOLY

Electrical Approach

The electrical approach assumes no physical interpretation, but
requires a local (element) distribution, and a global (model)
distribution. In this example:

* You can match the capacitors to +1%, for the 2-sigma population.

» The process can maintain a +10% variation, from run to run, for a
2-sigma distribution.

Cla 1 0 CMOD SCALE=ELCAP

Clb 1 0 CMOD SCALE=ELCAP

ClC 1 0 CMOD SCALE=ELCAP

ClD 1 0 CMOD SCALE=ELCAP

. PARAM ELCAP=Gauss(1,.01,2) $ 1%at 2 sigm
+ MODCAP=Gauss(.25p,.1,2) $10% at 2 sigmm

. MODEL CMOD C CAP=MODCAP

Statistical Analysis and Optimization: Monte Carlo Analysis
12-25

Worst Case and Monte Carlo Sweep Example

The following example measures the delay of a pair of inverters.
* Aninverter buffers the input.
* Another inverter loads the output.

The model is prepared according to the scheme described in the
previous sections:

» The first . TRAN analysis statement sweeps from the worst-case
3-sigma slow, to 3-sigma fast.

 The second .TRAN performs 100 Monte Carlo sweeps.

HSPICE Input File

The HSPICE input file can contain the following sections.

Analysis Setup Section

To accelerate the simulation, the AUTOSTOP option automatically
stops the simulation, when the .MEASURE statements achieve their
target values.

$ inv.sp sweep nosfet -3 sigma to +3 signa,
$ then Monte Carlo

. option nopage nonod acct

+ aut ost op post =2

.tran 20p 1.0n sweep sigm -3 3 .5
.tran 20p 1.0n sweep nonte=20

.option post co0=132

. param vref=2.5

.meas mdelay trig v(2) val=vref fall=1
+ targ v(out) val =vref fall=1

.meas m power rns power to=m del ay

. par am si gna=0

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-26

Circuit Netlist Section

.global 1

vcc 1 0 5.0

vininOpw 0,00.2n,5

X1 in 2 inv

X2 2 3 inv

X3 3 out inv

x4 out 5 inv

.macro inv in out
m out in O 0 nch WE10u L=1u
np out in 1 1 pch W=10u L=1u

. eom

Skew Parameter Overlay for Model Section

* overl ay of gaussi an and al gebrai c for best case worst case
+ and + nonte carlo
* +/- 3 sigma is the maxi mum val ue for paraneter sweep

. par am
+ nult1=1

+ pol ycd=agauss(0, 0. 06u, 1) x| =" pol ycd- si gma*0. 06u

+ nact cd=agauss(0, 0. 3u, 1) xwn=" nact cd+si gma*0. 3u

+ pact cd=agauss(0, 0. 3u, 1) xwp=' pact cd+si gna*0. 3u’

+ t oxcd=agauss(200, 10, 1) tox="toxcd-si gma*10’

+ vtoncd=agauss(0, 0. 05v, 1) del vt on=" vt oncd-si gnma*0. 05’
+ vtopcd=agauss(0, 0. 05v, 1) del vt op=" vt opcd+si gna*0. 05
+ rshncd=agauss(50, 8, 1) rshn="rshncd-si gna*8’

+ rshpcd=agauss(150, 20, 1) rshp='rshpcd-si gnma*20’

MOS Model for N-Channel and P-Channel Transistors

* LEVEL=28 exanpl e nodel for high accuracy nodel
. model nch nnos

LEVEL=28

ImMt=rmultl wrdt=rultl wef=22u |Iref=4.4u

Xl =xI xw=xwn t ox=t ox del vt o=del vt on rsh=rshn

| d=0. 06u wd=0.2u acm=2 | di f=0 hdif=2.5u

rs=0 rd=0 rdc=0 rsc=0

j s=3e-04 j sw=9e-10

cj=3e-04 n =5 pb=.8 cjsw=3e-10 njsw=.3 php=.8 fc=.5
capop=4 xqgc=.4 neto0=0. 08u

tlev=l cta=0 ctp=0 tlevc=0 nlev=0

+ 4+ ++++ 4+ +

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-27

trs=1.6e-03 bex=-1.5 tcv=1. 4e-03

dc nodel

x2e=0 x3e=0 x2ul=0 x2nB=0 Xx2u0=0 x2m=0
vfb0=-.5 phi 0=0.65 k1=.9 k2=.1 eta0=0
muz=500 u00=. 075

x3ms=15 ul=. 02 x3ul=0

bl=.28 b2=.22 x33n=0. 000000e+00

al pha=1.5 vcr=20

n0=1. 6 wfac=15 wf acu=0. 25

| vi b=0 | k1=. 025 | k2=.05 | al pha=5

. nodel pch pnos

++++++++ K+

+ LEVEL=28

+ Imt=nultl wrt=nultl wef=22u |ref=4.4u
+ x| =xI xw=xwp t ox=t ox del vt o=del vtop rsh=rshp
+ 1 d=0. 08u wd=0. 2u

+ acnme2 |1 di f=0 hdif=2.5u

+ rs=0 rd=0 rdc=0 rsc=0 rsh=rshp

+ js=3e-04 jsw=9e-10

+ cj=3e-04 m=.5 pb=.8 cjsw=3e-10 njsw=.3 php=.8 fc=.5
+ capop=4 xqc=.4 net o0=0. 08u

+ tlev=l cta=0 ctp=0 tlevc=0 nlev=0

+ trs=1.6e-03 bex=-1.5 tcv=-1.7e-03

* dc nodel

+ x2e=0 x3e=0 x2ul=0 x2nms=0 x2u0=0 x2m=5

+ vfb0=-.1 phi 0=0. 65 kl1=.35 k2=0 eta0=0

+ muz=200 u00=. 175

+ x3ms=8 ul=0 x3ul=0.0

+ bl=.25 b2=.25 x33m=0.0

+ al pha=0 vcr=20

+ n0=1.3 wfac=12.5 wfacu=. 2

+ lvfb=0 | k1=-.05

.end

Transient Sigma Sweep Results

The plotin Figure 12-12 on page 12-29 shows the family of transient
analysis curves, for the transient sweep of the sigma parameter,
from -3 to +3. HSPICE then algebraically couples sigma into the
skew parameters. The resulting parameters modify the actual NMOS
and PMOS models.

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-28

Figure 12-12 Sweep of Skew Parameters from -3 Sigma to +3 Sigma

MONTE CARLO YIELD ESTIMATION

INV TR1
2

ourT

w -+
[=3 o

ZH~r A o<

o
o

To view the transient curves, plotthe .MEASURE output file. The plot
in Figure 12-13 on page 12-29 shows the measured pair delay, and
the total dissipative power, against the SIGMA parameter.

Figure 12-13 Sweep MOS Inverter, Pair Delay and Power: -3 Sigma to 3
Sigma

$ INV.SP SWEEP MOS INVERTER -3 SIGMA TO -3 SIGMA

P — INV_MToO

A Z M_DELAY
R -
A =
M -
L =
I —_
N -

1

P = INV.MTO

A 2 M_POWER
R =
A 8.0M — -
M -
L _
I 7 oM — -
N -
6.0M — -
T 1 T A |

5.4133M 2.0 1.0 0. 1.0 2.0

3.0 SIGMA C(LIND 3.0

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-29

Monte Carlo Results

This section evaluates the output of the Monte Carlo analysis in
HSPICE. The plot in Figure 12-14 on page 12-30 is a quality-control
step, which plots TOX against XL (polysilicon critical dimension).
Synopsys graphing software returned the cloud of points, based on:

« Setting XL as the X-axis independent variable.
* Plotting TOX, with a symbol frequency of 1.

These settings plot points, without connecting lines. The resulting
graph demonstrates that the TOX model parameter is randomly
independent of XL.

Figure 12-14 Scatter Plot, XL and TOX

SCATTER PLOT DEMONSTRATING INDEPENDENCE OF XL AND TOX

o
oz
x <
® —
3
ox
< —
oo
=]

240 .0

220 .0

200 .0

180 .0

160 .0

140 .0

Z—~r XDIUDT

120 .0
100.0
80 .0
60 .0
40.0

20 .0
|

| O [S N B [B
-400 . 0N -200 .0N 200 .0N 400 .0N

0 .
0 .
00 0N XLePOLYCD (LIN) 500 .0N

al "\H‘H\‘\H‘\H‘\H‘\H‘H\‘\H‘H\‘\H‘\H‘\H‘H

The next graph (see Figure 12-15 on page 12-31) is a standard
scatter plot, showing the measured delay for the inverter pair,
against the Monte Carlo index number. If a particular result looks
interesting—for example, if the simulation 68 (monte carlo index =
68) produces the smallest delay—then you can read the output
listing file, and obtain the Monte Carlo parameters for that simulation.

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-30

*** nmpnte carlo i ndex = 68 ***
MONTE CARLO PARAMETER DEFI NI TI ONS

pol ycd: x|l = -1.6245E-07
nactcd: xwn = 3.4997E-08
pactcd: xwp = 3. 6255E- 08

toxcd: tox = 191.0
vtoncd: del vton
vt opcd: del vt op
rshncd: rshn = 45.16
rshpcd: rshp = 166. 2

-2.2821E-02
4.1776E-02

m del ay
m_power

1. 7946E-10 targ= 3.4746E-10 trig= 1.6799E-10
7.7781E-03 from= 0. 0000E+00 to= 1.7946E-10

In the preceding listing, the m_delay value of 1.79e-10 seconds is
the fastest pair delay. You can also examine the Monte Carlo
parameters.

Figure 12-15 Scatter Plot of Inverter Pair Delay

SCATTER PLOT OF INVERTER PAIR DELAY
350.0P ’ o _ INVI _MTO
- - M_DELAY
Z T mRERERT
300.0P T A oA A = C =
Z A N ,
- A A A Z
A N “ 2 PN PN -
A & AL S AT AL 280 AN A g VAN
I NN AT A
250 . 0P 4 A%l A& A N P PR A R o
VAN A A VAN AN A A AN -
- NS & AL A AT A RN AT N7 Aa -
Z A <
200.0pP — C N N T N
- N -
150.0P — : -
100 0P — . -
50.0P — : C
0 — e T [R C
- 20 .0 40 .0 80.0 80 .0
1.0 INDEX (LIND 100.0

Plotting against the Monte Carlo index number does not help to
center the design. To center the design:

1. Graph the various process parameters against the pair delay.

This graph determines the most sensitive process variables.

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-31

2. Select the pair delay, as the X-axis independent variable.
3. Set the symbol frequency to 1, to obtain the scatter plot.

Figure 12-16 plots the expected sensitivity of the output pair delay,
to channel length variation (polysilicon variation).

Figure 12-16 Sensitivity of Delay with Poly CD (XL)

SENSITIVITY OF PAIR DELAY WITH RESPECT TO POLYSILICON CD

n
al
)
o
z
>
mz
@<
T
o
[
~
oo
=}

200 .0N

150 .0N

100 .0N

50.0N

0 .

-50.0N

-100.0N

-150.0N

-200 .0N

4L\H‘H\\‘\H\‘HJ\‘\\H“HH‘UH‘\HL‘\U\“HJ\‘

l | l l l l | l l l l | l l l l | l l l l
150.0P 250 . 0P 300.0P 350 .0P

-250 . 0N o
100.0P M Y C(LIND 350.0P

The next plot shows the TOX parameter, against the pair delay
(Figure 12-17 on page 12-33). The scatter plot does not have a clear
tilt, because TOX is a secondary process parameter, compared to
XL. To explore this in more detail, set the XL skew parameter to a
constant, and run a simulation.

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-32

Figure 12-17 Sensitivity of Delay with TOX

Z =TI XDOUDT

SENSITIVITY OF PAIR DELAY WITH RESPECT TO TOX

: T INVI . MTO

2uo0. 0 — . — J0xeroxco
_ ~n R
220.0 — p i a8 A : -
- o PNV RN 2 -
_ A%AA AN % A _
_ A _
‘ N VNN :
200 .0 — - 'Aﬁg N 2B —
- A DA AN o AA -
_ A o RN _
— A @A &AA YAVAR —
180.0 — I A C -
160.0 — -
140.0 — -
teo.o0 — -
oo O; . S I R | I _

- 150.0P 200.0P 250.0P 300.0P 350.0P

100.0P M_DELAY (LIN) 350.0P

The plot in Figure 12-18 on page 12-34 overlays a 3-sigma, worst-
case corners response, on a 100-point Monte Carlo analysis. The
actual (Monte Carlo) distribution for power/delay is very different
from the +3 sigma to -3 sigma plot.

* This example simulated the worst case in 0.5 sigma steps.
» The actual response is closer to +1.5 sigma, instead of + 3 sigma.

» This produces a predicted delay variation of 100 ps, instead of
200 ps.

Therefore, the advantage of using Monte Carlo over traditional 3-
sigma, worst-case corners, is a 100% improvement in accuracy of
simulated-to-actual distribution. This shows how the worst-case
procedure is overly pessimistic.

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-33

Figure 12-18 Superimposing Sigma Sweep Over Monte Carlo

SUPERIMPOSE -3 SIGMA TO -3 SIGMA SWEEP OVER MONTE CARLO

=

=

=
=~
|z
T<
o~
=
mx
o

<~
|z
o<
o

==
m—
Do

8 .50M

7 .5 0M

Z=T XDAUDT
@©
o
=

6 .50M

5. 50M

Sl looachood oo oo b beacb e

oo
To

N
(=1
=
SRR R R R N R AR

a

IS

=
IS
o

o
o
o
=
|

o
m
—
D
S
o
o

Figure 12-19 on page 12-35 superimposes the assumed part grades
from marketing studies, onto the Monte Carlo plot. This example
uses a 250 ps delay, and 7.5 mW power dissipation, to determine the
four binning grades. A manual count shows:

 Binl-13%
« BiIn2-37%
« BIN3-27%
* Bin4d - 23%

If this circuit is representative of the entire chip, then the present
yield should be 13% for the premium Bin 1 parts, assuming
variations in design and process.

Statistical Analysis and Optimization: Worst Case and Monte Carlo Sweep Example
12-34

Figure 12-19 Speed/Power Yield Estimation

MONTE CARLO YIELD ESTIMATION
. omM = = INVI MTO
- - M_POWER
8,750!‘4; B - o - B B - B B - B B - o - B B - 7: I
= ~Bin2-37sims] Bin4-23sims = =
8.50M = A A -
z A N z
E A A o \ . =
8.250M = N A CBA A -
P - A JAVAN A o N =
A 8.0M — B - - B - B % VAVA B B B - —
R - ! AN z
oy A 4 AN oy
A 7 7B50M = A AN SR =
M H A INSBVNE N A -
. 7 .50M = ‘ ﬁm NYNEEDN =
1 E A AL A A =
N 7 .250M = A Y A : 4 =
s 4 A L AN A =
7 .0M FANNY: V- NEEAY - -
= : N A E
6.750M — B 1 1 ‘oilm B - o - B B -
B inl-13sims : i E
z ‘ Bin3 - 27 sims B
6.50M — . c c : : - S T : =
6.250M = - . - =
e om | | | I | | | R
950 op 200.0P 250 . 0P 300.0P 350 .0P
150 . 0P M_DELAY C(LIND 350.0P

Optimization

Optimization automatically generates model parameters and
component values, from a set of electrical specifications or
measured data. With you define an optimization program and a
circuit topology, HSPICE automatically selects the design
components and model parameters, to meet your DC, AC, and
transient electrical specifications.

HSPICE optimization is the result of more than ten years of research,
in both optimizing algorithms and user interface.

» The optimizing function is integrated into the core of HSPICE, for
optimum efficiency.

» The circuit-result targets are part of the .MEASURE command
structure.

« HSPICE optimize its own internally-defined parameter functions.

Statistical Analysis and Optimization: Optimization
12-35

Use a .MODEL statement to set up the optimization.

Note: HSPICE uses post-processing output to compute the
.MEASURE statements. If you set INTERP=1 to reduce the
post-processing output, the measurement results might
contain interpolation errors. See Input and Output Options on
page 8-34 for more information about these options.

The most powerful feature of HSPICE optimization is its incremental
optimization technique. You can use this technique to solve the DC
parameters first, then the AC parameters, and finally the transient
parameters. A set of optimizer measurement functions not only
makes transistor optimization easy, but significantly improves cell
and circuit optimization.

To perform optimization, create an input netlist file that specifies:

e Minimum and maximum parameter and component limits.
» Variable parameters and components.

* Aninitial estimate of the selected parameter and component
values.

« Circuit performance goals, or a model-versus-data error function.

If you provide the input netlist file, optimization specifications,
component limits, and initial guess, then the optimizer reiterates the
circuit simulation, until it either meets the target electrical
specification, or finds an optimized solution.

For improved optimization, reduced simulation time, and increased
likelihood of a convergent solution, the initial estimate of component
values should produce a circuit whose specifications are near those
of the original target. This reduces the number of times the optimizer
reselects component values and resimulates the circuit.

Statistical Analysis and Optimization: Optimization

12-36

Optimization Control

How much time an optimization requires, before it completes,
depends on:

* Number of iterations allowed.
* Relative input tolerance.

* Output tolerance.

« Gradient tolerance.

The default values are satisfactory for most applications. Generally,
10 to 30 iterations are sufficient, to obtain accurate optimizations.

Simulation Accuracy
For optimization, set the simulator with tighter convergence options
than normal. The following are suggested options:

For DC MOS model optimizations:

absnos=1e- 8
rel nos=1e-5
rel v=le-4

For DC JFET, BJT, and diode model optimizations:

absi =1le-10
reli=1le-5
rel v=le-4

For transient optimizations:

rel v=le-4
relvar=le-2

Statistical Analysis and Optimization: Optimization
12-37

Curve Fit Optimization

Use optimization to curve-fit DC, AC, or transient data.

1.

Use the .DATA statement to store the numeric data for curves, in
the data file, as in-line data.

Use the .PARAM xxx=0OPTxxx statement to specify the variable
circuit components, and the parameter values, for the netlist.

The optimization analysis statements use the DATA= keyword to
call the in-line data.

Use the .MEASURE statement to compare the simulation result
to the values in the data file

In this statement, use the ERR1 keyword to control the
comparison.

If the calculated value is not within the error tolerances specified in
the optimization model, HSPICE selects a new set of component
values. HSPICE then simulates the circuit again, and repeats this
process, until it obtains the closest fit to the curve, or until the set of
error tolerances is satisfied.

Goal Optimization

Goal optimization differs from curve-fit optimization, because it
usually optimizes only a particular electrical specification, such as
rise time or power dissipation.

1.
2.

To specify goal optimizations, use the GOAL keyword.

In the . MEASURE statement, select a relational operator, where
GOAL is the target electrical specification to measure.

For example, you can choose a relational operator in multiple-
constraint optimizations, when the absolute accuracy of some
criteria is less important than for others.

Statistical Analysis and Optimization: Optimization

12-38

Timing Analysis

To analyze circuit timing violation, HSPICE uses a binary search
algorithm. This algorithm generate a set of operational parameters,
which produce a failure in the required behavior of the circuit. When
a circuit timing failure occurs, you can identify a timing constraint,
which can lead to a design guideline. Typical types of timing
constraint violations include:

« Data setup time, before a clock.
« Data hold time, after a clock.

* Minimum pulse width required, to allow a signal to propagate to
the output.

« Maximum toggle frequency of the component(s).

Bisection Optimization finds the value of an input variable (target
value), associated with a goal value for an output variable. You can
use various types of input and output variables, and a transfer
function to relate them.

EXAMPLE:
« voltage
e current

« delay time

e gain

You can use the bisection feature, in either a pass-fail mode or a
bisection mode. In each case, the process is largely the same.

Statistical Analysis and Optimization: Optimization
12-39

Optimization Syntax

Optimization requires several HSPICE statements:

.MODEL modname OPT ...
.PARAM parameter=0OPTxxx (init, min, max)

Use the .PARAM statement to specify initial, lower, and upper
bounds.

A .DC, .AC, or .TRAN analysis statement, with:
- MODEL=modname

- OPTIMIZE=OPTxxx

- RESULTS=measurename

Use the .PRINT, .PLOT, and .GRAPH output statements, with
the .DC, .AC, or .TRAN analysis statements.

Use an analysis statement, with the OPTIMIZE keyword, only for
optimization. To generate output for the optimized circuit, specify
another analysis statement (.DC, .AC, or .TRAN), and the output
statements.

.MEASURE measurename ... <GOAL = | < | > val>

Include a space on either side of the relational operator:

VvV Al

For a description of the types of .MEASURE statements that you
can use in optimization, see Simulation Output on page 7-1.

Statistical Analysis and Optimization: Optimization

12-40

The proper specification order is:

Analysis statement, with OPTIMIZE.

.MEASURE statements, specifying optimization goals or error
functions.

Ordinary analysis statement.
Output statements.

Analysis Statement (.DC, .TRAN, .AC)

SYNTAX:
. DC <DATA=fi | ename> SWEEP OPTI M ZE=OPTxXxX
+ RESULTS=ierrl ... ierrn MODEL=opt nod

. AC <DATA=fi | ename> SWEEP OPTI M ZE=OPTxXxX
+ RESULTS=ierrl ... ierrn MODEL=opt nod

See also Optimization on page 11-5.

. TRAN <DATA=fi | ename> SVEEP OPTI M ZE=OPTxxx

+ RESULTS=ierrl ... ierrn MODEL=opt nod
Table 12-3 DC, TRAN, and AC Analysis Syntax

Parameter | Description

DATA Specifies an in-line file of parameter data, to use in optimization.

MODEL The optimization reference name, which you also specify in the .MODEL
optimization statement.

OPTIMIZE Indicates that the analysis is for optimization. Specifies the parameter
reference name, used in the .PARAM optimization statement. In a .PARAM
optimization statements, if OPTIMIZE selects the parameter reference name,
then the associated parameters vary during an optimization analysis.

RESULTS The measurement reference name. You also specify this name in

the .MEASURE optimization statement. RESULTS passes the analysis data to
the .MEASURE optimization statement.

Statistical Analysis and Optimization: Optimization
12-41

.PARAM Statement

SYNTAX:

. PARAM par anet er =OPTxxx (initial _guess, lowlimt,
+ upper _limt)

or

. PARAM par anet er =OPTxxx (initial_guess, lowlimt,
+ upper _limt, delta)

Table 12-4 .PARAM Syntax

Parameter | Description

OPTxxx Optimization parameter reference hame. The associated optimization analysis
references this name. Must agree with the OPTxxx name in the analysis
command associated with an OPTIMIZE keyname.

parameter Parameter to vary.

 Initial value estimate

e Lower limit.

e Upper limit.

If the optimizer does not find the best solution within these constraints, it
attempts to find the best solution without constraints.

delta The final parameter value is the initial guess * (nldelta). If you do not specify
delta, the final parameter value is between low_limit and upper_limit. For
example, you can use this parameter to optimize transistor drawn widths and
lengths, which must be quantized.

In the following example, uox and vtx are the variable model
parameters, which optimize a model for a selected set of electrical
specifications.

. PARAM vt x=0PT1(. 7, .3, 1.0) uox=OPT1(650, 400, 900)

Statistical Analysis and Optimization: Optimization
12-42

The estimated initial value for the vtx parameter is 0.7 volts. You can
vary this value within the limits of 0.3 and 1.0 volts, for the
optimization procedure. The optimization parameter reference name
(OPT1) references the associated optimization analysis statement
(not shown).

.MODEL Statement

For each optimization within a data file, specify a .MODEL
statement. HSPICE can then execute more than one optimization
per simulation run. The .MODEL optimization statement defines:

« Convergence criteria.
* Number of iterations.

 Derivative methods.

SYNTAX:

. MODEL mMmane OPT <paraneter=val ...>

Statistical Analysis and Optimization: Optimization
12-43

You can specify the following OPT parameters in the .MODEL
statement:

Table 12-5 .MODEL Syntax

Parameter

Description

mname

Model name. Elements use this name to refer to the model.

CENDIF

Selects different derivative methods. Default=1.0e-9.
The following calculates the gradient of the RESULTS functions:
|| Transpose(Jacobi(F(X))) * F(X)||, where F(X) is the RESULT function

If the resulting gradient is less than CENDIF, HSPICE uses more accurate but
more time-consuming derivative methods. By default, HSPICE uses faster but
less-accurate derivative methods. To use the more-accurate methods, set
CENDIF to a larger value than GRAD.

If the gradient of the RESULTS function is less than GRAD, optimization
finishes before CENDIF takes effect.

« |If the value is too large, the optimizer requires more CPU time.
 If the value is too small, the optimizer might not find as accurate an answer.

CLOSE

Initial estimate of how close parameter initial value estimates are, to the
solution. CLOSE multiplies changes in new parameter estimates. If you use a
large CLOSE value, the optimizer takes large steps toward the solution. For a
small value, the optimizer takes smaller steps toward the solution. You can use
a smaller value for close parameter estimates, and a larger value for rough
initial guesses. Default=1.0.

« If CLOSE is greater than 100, the steepest descent in the Levenburg-
Marquardt algorithm dominates.

* |f CLOSE is less than 1, the Gauss-Newton method dominates.

For more details, see L. Spruiell, “Optimization Error Surfaces,” Meta-Software

Journal, Vol. 1, No. 4, December 1994.

CuTt

Modifies CLOSE, depending on how successful iterations are, toward the
solution.

If the last iteration succeeds, descent toward the CLOSE solution decreases by
the CUT value. That is, CLOSE = CLOSE / CUT

If the last iteration was not a successful descent to the solution, CLOSE
increases by CUT squared. That is, CLOSE = CLOSE * CUT * CUT

CUT drives CLOSE up or down, depending on the relative success in finding
the solution. The CUT value must be > 1. Default = 2.0.

Statistical Analysis and Optimization: Optimization

12-44

Table 12-5 .MODEL Syntax (Continued)

Parameter | Description

DIFSIZ Increment change in a parameter value, for gradient calculations (Ax = DIFSIZ
Cmax(x, 0.1)). If you specify delta in a .PARAM statement, then Ax = delta.
Default = 1e- 3.

GRAD Represents possible convergence, if the gradient of the RESULTS function is

less than GRAD. Most applications use values of 1e-6 to 1e-5. Too large a
value can stop the optimizer before finding the best solution. Too small a value
requires more iterations. Default=1.0e-6.

ITROPT Maximum number of iterations. Typically, you need no more than 20-40
iterations, to find a solution. Too many iterations can imply that the RELIN,
GRAD, or RELOUT values are too small. Default=20.

LEVEL Selects an optimizing algorithm. Currently, the only option is LEVEL=1, a
modified Levenburg-Marquardt algorithm.

MAX Sets the upper limit on CLOSE. Use values > 100. Default=6.0e+5.

PARMIN Allows better control of incremental parameter changes, during error

calculations. Default=0.1. This produces more control over the trade-off
between simulation time and optimization result accuracy. To calculate
parameter increments, HSPICE uses the relationship:

Amtap_woA = DIFSIZ IMAX(Ttap_woA, PARMIN)

RELIN Sets the relative input parameter (delta_par_val / MAX(par_val,1e-6)), for
convergence. If all optimizing input parameters vary by no more than RELIN
between iterations, the solution converges. RELIN is a relative variance test,
so a value of 0.001 implies that optimizing parameters vary by less than 0.1%,
from one iteration to the next. Default=0.001.

RELOUT Sets the relative tolerance to finish optimization. For RELOUT=0.001, if the
relative difference in the RESULTS functions, from one iteration to the next, is
less than 0.001, then optimization is finished. Default=0.001.

Statistical Analysis and Optimization: Optimization
12-45

Optimization Examples

This section contains examples of HSPICE optimizations:
« MOS Level 3 Model DC Optimization

« MOS Level 13 Model DC Optimization

 RC Network Optimization

* Optimizing CMOS Tristate Buffer

« BJT S Parameters Optimization

 BJT Model DC Optimization

e Optimizing GaAsFET Model DC

Optimizing MOS Op-amp

MOS Level 3 Model DC Optimization

This example shows an optimization of |-V data, to a Level 3 MOS
model. The data consists of gate curves (ids versus vgs) and drain
curves (ids versus vds).

This example optimizes the Level 3 parameters:

« VTO

- GAMMA
« UO

« VMAX

« THETA

- KAPPA

After optimization, HSPICE compares the model to the data for the
gate, and then to the drain curves. The POST option generates
AvanWaves files, for comparing the model to the data.

Statistical Analysis and Optimization: Optimization Examples
12-46

Input Netlist File, for Level 3 Model DC Optimization

$SLEVEL 3 nosfet optinzation

$. .tighten the sinulator convergence properties

. OPTI ON nonod post=2 newtol relnos=1le-5 absnbs=le-8
. MODEL optnod OPT itropt=30

Circuit Input

vds 30 0 vds

vgs 20 0 vgs

vbs 40 0 vbs

m. 30 20 0 40 nch w=50u | =4u

$. .

$. . process skew paraneters for this data

. PARAM xwn=-0. 3u xI n=-0. 1u toxn=196.6 rshn=67

$. .the nodel and initial guess

. MODEL nch NMOS LEVEL=3

acnr2 1 dif=0 hdif=4u tlev=1 n=2
capop=4 net 0=0. 08u xqc=0. 4
...note capop=4 is ok for H3907 and | ater, otherw se
...use Capop=2

...fixed paraneters

wd=0. 15u | d=0. 07u

j s=1.5e-04 jsw=1. 8e-09
cj=1.7e-04 cj sw=3. 8e-10
nfs=2ell xj =0.1u delta=0 eta=0

++++HBH+ +

... process skew paraneters
t ox=t oxn rsh=rshn
xw=xwn X| =xIn

+ + &

Optimized Parameters

+ vt o=vt 0 gamma=gamma
+ uo=uo vnmax=vmax thet a=t heta kappa=kappa

. PARAM

+ vto = opt1(1,0.5,2)

+ gamma = opt 1(0.8,0.1, 2)

+ U0 = opt 1(480, 400, 1000)
+ vmax = opt 1(2e5, 5e4, 5e7)
+ theta = opt1(0.05, le-3,1)
+ kappa = optl(2,le-2,5)

Statistical Analysis and Optimization: Optimization Examples
12-47

Optimization Sweeps

. DC DATA=al | optim ze=optl results=conpl nodel =opt nod
. MEAS DC conpl ERR1 par(ids) i(nl) mnval =1e-04 i gnor=1e-05

DC Sweeps

. DC DATA=gat e
. DC DATA=dr ai n

Print Sweeps

. PRINT DC vds=par (vds) vgs=par(vgs) inri (m) id=par(ids)
. PRINT DC vds=par (vds) vgs=par(vgs) inri (m) id=par(ids)

DC Sweep Data

$. . data

. PARAM vds=0 vgs=0 vbs=0 ids=0

. DATA all vds vgs vbs ids

1. 000000e-01 1.000000e+00 0. 000000e+00 1.655500e- 05
5. 000000e+00 5. 000000e+00 0. 000000e+00 4.861000e-03
. ENDATA

. DATA gate vds vgs vbs ids

1. 000000e-01 1.000000e+00 0.000000e+00 1.655500e-05
1. 000000e-01 5. 000000e+00 -2.000000e+00 3.149500e-04
. ENDDATA

. DATA drain vds vgs vbs ids

2.500000e-01 2.000000e+00 0.000000e+00 2.302000e- 04
5. 000000e+00 5. 000000e+00 0. 000000e+00 4.861000e-03
. ENDDATA

. END

The HSPICE input netlist shows:

Using .OPTION to tighten tolerances, which increases the
accuracy of the simulation. Use this method for I-V optimization.

.MODEL optmod OPT itropt=30 limits the number of iterations to
30.

The circuit is one transistor. The VDS, VGS, and VBS parameter
names, match names used in the data statements.

Statistical Analysis and Optimization: Optimization Examples

12-48

.PARAM statements specify XL, XW, TOX, and RSH process
variation parameters, as constants. The device characterizes
these measured parameters.

The model references parameters. In GAMMA= GAMMA, the left
side is a Level 3 model parameter name; the right side is
a .PARAM parameter name.

The long .PARAM statement specifies initial, min and max
values, for the optimized parameters. Optimization initializes UO
at 480, and maintains it within the range 400 to 1000.

The first .DC statement indicates that:

- Data is in the in-line .DATA all block, which contains merged
gate and drain curve data.

- Parameters that you declared as OPT1 (in this example, all
optimized parameters) are optimized.

- The COMP1 error function matches the name ofa . MEASURE
statement.

- The OPTMOD model sets the iteration limit.

The .MEASURE statement specifies least-squares relative error.
HSPICE divides the difference between data par(ids) and model
i(m1), by the larger of:

- the absolute value of par(ids), or
- minval=10e-6
If you use minval, low current data does not dominate the error.

Use the remaining .DC and .PRINT statements for print-back,
after optimization. You can place them anywhere in the netlist
input file, because parsing the file correctly assigns them.

The .PARAM VDS=0 VGS=0 VBS=0 IDS=0 statements declare
these data column names, as parameters.

Statistical Analysis and Optimization: Optimization Examples
12-49

The .DATA statements contain data for IDS versus VDS, VGS, and
VBS. Select data that matches the model parameters to optimize.

EXAMPLE:

To optimize GAMMA, use data with back bias (VBS= -2 in this case).
To optimize KAPPA, the saturation region must contain data. In this
example, the all data set contains:

» Gate curves: vds=0.1 vbs=0,-2 vgs=1 to 5, in steps of 0.25.
« Drain curves: vbs=0 vgs=2,3,4,5 vds=0.25 to 5, in steps of 0.25.

Figure 12-20 shows the results.

Figure 12-20 Level 3 MOSFET Optimization

$LEVEL 3 MOSFET OPTIMIZATION
14-0CT92 14:40:25

361 .270U °

— OPTLEVEL3 S:

- IM
300.0U C

200.0U _

100.0U ~

[[[|
1.50 2.0 2.50

| [[[[
3.0 3.50 4.0 4.50

1.0 V6S (LIN)D 5.0

250 OM ' ©YDS (LINY ' 5 0

Statistical Analysis and Optimization: Optimization Examples

12-50

MOS Level 13 Model DC Optimization

This example shows I-V data optimization, to a Level 13 MOS model.
The data consists of gate curves (ids versus vgs) and drain curves
(ids versus vds). This example demonstrates two-stage optimization.

1. HSPICE optimizes the vfb0, k1, muz, x2m, and u0O Level 13
parameters, to the gate data.

2. HSPICE optimizes the MUS, X3MS, and U1 Level 13 parameters,
and the ALPHA impact ionization parameter, to the drain data.

After optimization, HSPICE compares the model to the data. The
POST option generates AvanWaves files, to compare the model to
the data. Figure 12-21 on page 12-53 shows the results.

DC Optimization Input Netlist File, for Level 13 Model

$LEVEL 13 nosfet optinzation

$. .tighten the sinulator convergence properties

. OPTI ON nonod post=2 newtol relnos=le-5 absnos=1le-8
. MODEL optnod OPT itropt=30

Circuit Input

vds 30 0 vds

vgs 20 0 vgs

vbs 40 0 vbs

m. 30 20 0 40 nch w=50u | =4u

$. .

$. . process skew paraneters for this data

. PARAM xwn=-0. 3u xI n=-0. 1u toxn=196. 6 rshn=67

$. .the nodel and initial guess

. MODEL nch NMOS LEVEL=13

acnme2 1 di f=0 hdif=4u tlev=1l n=2 capop=4 net 0=0. 08u
xqc=0. 4

... paraneters obtained from neasurenents

wd=0. 15u 1 d=0. 07u js=1.5e-04 jsw=1. 8e-09

cj=1.7e-04 cj sw=3. 8e-10

...paranmeters not used for this data

k2=0 eta0=0 x2e=0 x3e=0 x2ul=0 x2nms=0 x2u0=0 x3ul=0

+PA+ + 0+ +

Statistical Analysis and Optimization: Optimization Examples
12-51

...process skew paraneters
t oxnmFt oxn rsh=rshn

+ &

+ Xxw=xwn x| =xIn

$...optimzed paraneters

+ vibO=vf b0 kl=k1l x2m=x2m nmuz=nuz u00=u00
+ mus=nmus x3nms=x3nms ul=ul
$...inpact ionization paraneters
+ al pha=al pha vcr=15

. PARAM

+ vibO = optl(-0.5, -2, 1)

+ k1 = opt1(0.6,0. 3,1)

+ nmuz = opt 1(600, 300, 1500)

+ X2m = opt1(0,-10, 10)

+ u00 = opt1(0.1,0,0.5)

+ mus = opt 2(700, 300, 1500)

+ Xx3ms = opt 2(5, 0, 50)

+ ul = opt2(0.1,0,1)

+ al pha = opt2(1, 1le-3,10)

Optimization Sweeps

. DC DATA=gate optim ze=optl results=conpl nodel =opt nod

. MEAS DC conpl ERRL par(ids) i(nml) m nval =1le-04 i gnor=1e-05
. DC DATA=drai n optim ze=opt2 results=conp2 nodel =opt nod

. MEAS DC conp2 ERR1 par(ids) i(nl) mnval =1e-04 i gnor=1e-05

DC Data Sweeps

. DC DATA=gat e
. DC DATA=dr ai n

Print Sweeps

. PRINT DC vds=par (vds) vgs=par(vgs) inwi (nl) id=par(ids)
. PRINT DC vds=par (vds) vgs=par(vgs) inmri (m) id=par(ids)

DC Sweep Data

$. .data

. PARAM vds=0 vgs=0 vbs=0 ids=0

. DATA gate vds vgs vbs ids

1. 000000e-01 1.000000e+00 0. 000000e+00 1.655500e- 05
1. 000000e- 01 5.000000e+00 -2.000000e+00 3.149500e-04
. ENDDATA

Statistical Analysis and Optimization: Optimization Examples

12-52

. DATA drain vds vgs vbs ids

2.500000e-01 2. 000000e+00 0.000000e+00 2.809000e-04
5. 000000e+00 5. 000000e+00 0. 000000e+00 4.861000e-03
. ENDDATA

. END

Figure 12-21 Level 13 MOSFET Optimization

AMPOPT .SP MOS OPERATIONAL AMPLIFIER OPTIMIZATION
14-0CT92 17:56:35

ML130PT _SHO
M

A ,
M 300.0U A

| | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | | ‘ | | | |
1.50 2.0 2.50 3.0 3.50 4.0 4.50
1.0 VBS (LIN) 5.0

250 OM ' CVDS (LIND)

ol
=y

RC Network Optimization

The following example optimizes the power dissipation and time
constant, for an RC network. The circuit is a parallel resistor and
capacitor. Design targets are:

e« 1 stime constant.

50 mW rms power dissipation, through the resistor.

Statistical Analysis and Optimization: Optimization Examples
12-53

The HSPICE strategy is:

« RC1 .MEASURE calculates the RC time constant, where the
GOAL of .3679 V corresponds to 1 s time constant e-rc.

« RC2 .MEASURE calculates the rms power, where the GOAL is
50 mW.

* OPTrc identifies RX and CX as optimization parameters, and
sets their starting, minimum, and maximum values.

Network optimization uses these HSPICE features:

* Measure voltages, and report times that are subject to a goal.
* Measure device power dissipation, subject to a goal.

» Measure statements replace the tabular or plot output.

« Parameters used as element values.

« Parameter optimizing function.

« Transient analysis, with SWEEP optimizing.

RC Network Optimization Input Netlist File

.title RCOPT. sp
.option post

. PARAM RX=0OPTRC(. 5, 1E-2, 1E+2)
. PARAM CX=OPTRC(. 5, 1E-2, 1E+2)

. MEASURE TRAN RC1 TRI G AT=0 TARG V(1) VAL=.3679 FALL=1
+ GOAL=1lsec
. MEASURE TRAN RC2 RMS P(R1) GOAL=50mnatts

. MODEL OPT1 OPT

.tran .1 2 $ initial values

.tran .1 2 SWEEP OPTI M ZE=OPTrc RESULTS=RC1, RC2 MODEL=CPT1
.tran .1 2 $ anal ysis using final optimzed val ues
ic 11

RlL 1 0 RX

cl 10 CX

Statistical Analysis and Optimization: Optimization Examples

12-54

Optimization Results

RESI DUAL SUM OF SQUARES
NORM OF THE GRADI ENT
MARQUARDT SCALI NG PARAMETER
NO. OF FUNCTI ON EVALUATI ONS
NO. OF | TERATI ONS

1. 323651E- 06
6. 343728E- 03
2. 799235E- 06
24
12

Residual Sum of Squares

The residual sum of squares is a measure of the total error. The
smaller this value is, the more accurate the optimization results are.

ne
: 2
residual sum of squares = Z Ei
=1
In this equation, E is the error function, and ne is the number of error
functions.

Norm of the Gradient

The norm of the gradient is another measure of the total error. The
smaller this value is, the more accurate the optimization results are.
The following equations calculates the G gradient:

ne
G; = y E;QDE/DP)
i=1

np

norm of the gradient = 2 [Y sz

In this equation, P is the parameter, and np is the number of
parameters to optimize.

Statistical Analysis and Optimization: Optimization Examples
12-55

Marquardt Scaling Parameter

The Levenburg-Marquardt algorithm uses this parameter to find the
actual solution for the optimizing parameters. The search direction is
a combination of the Steepest Descent method, and the Gauss-
Newton method.

The optimizer initially uses the Steepest Descent method, as the
fastest approach to the solution. It then uses the Gauss-Newton
method, to find the solution. During this process, the Marquardt
Scaling Parameter becomes very small, but starts to increase again,
if the solution starts to deviate. If this happens, the optimizer chooses
between the two methods, to work toward the solution again.

If the optimizer does not attain the optimal solution, it prints both an
error message, and a large Marquardt Scaling Parameter value.

Number of Function Evaluations

This is the number of analyses (for example, finite difference or
central difference) needed, to find a minimum of the function.

Number of Iterations

This is the number of iterations needed, to find the optimized or
actual solution.

Optimized Parameters OPTRC

* YNORM SEN CHANGE
. PARAM RX 6. 7937 $ 54.5260 50. 2976M
. PARAM CX 147.3697M $ 45. 4740 33. 7653M

Statistical Analysis and Optimization: Optimization Examples
12-56

Figure 12-22 Power Dissipation and Time Constant (VOLT) RCOPT.TRO =

Before Optimization, RCOPT.TR1 = Optimized Result

*FILE: RCOPT.SP OPTIMIZE THE POWER DISSAPATION AND TIME CONSTANT

14-0CT92 14: 6:14

- RCOPT.TRO

998567 M 3N
A ' ' ' -1
300 0K - ‘ ‘ ‘ Z RCOPT.TRI

-1
SO

500.0M = 7

Z = A o<
5]
=Y
o
=Y
=

400.0M = 7
300.0M T 7
200.0M

fo0 oM = -

I I I
200.0M
0. TIME (LIN) 1.0

| [I
400.0M

| [I
600.0M

- I I I
323.90U 800 M

Figure 12-23 Power Dissipation and Time Constant (WATT)
RCOPT.TRO = Before Optimization, RCOPT.TR1 =
Optimized Result

*FILE: RCOPT.SP OPTIMIZE THE POWER DISSAPATION AND TIME CONSTANT

14-0CT792 14 614

180
160
to40 =
W -
A B
T 120 —
T
L Lo
I
N

RCOPT .TRO
P(R1

RCOPT .TRI
P(R1
[

oo o e bbb e b o b o

o
400.0M

600.0M
TIME (LIN)D 1.0

Statistical Analysis and Optimization: Optimization Examples
12-57

Optimizing CMOS Tristate Buffer

The example circuit is an inverting CMOS tristate buffer. The design
targets are:

1.

Rising edge delay of 5 ns (input 50% voltage, to output 50%
voltage).

Falling edge delay of 5 ns (input 50% voltage. to output 50%
voltage).

RMS power dissipation should be as low as possible.
Output load consists of:
- pad capacitance

- leadframe inductance
- 50 pF capacitive load

The HSPICE strategy is:

Simultaneously optimize both the rising and falling delay buffer.

Set up the internal power supplies, and the tristate enable, as
global nodes.

Optimize all device widths, except:

- Initial inverter (assumed to be standard size).

- Tristate inverter, and part of the tristate control (optimizing is
not sensitive to this path).

Perform an initial transient analysis, for plotting purposes. Then
optimize and perform a final transient analysis for plotting.

To use a weighted RMS power measure, specify unrealistically-
low power goals. Then use MINVAL to attenuate the error.

Statistical Analysis and Optimization: Optimization Examples

12-58

Input Netlist File, to Optimize a CMOS Tristate Buffer

*Tri-State input/output Optimzation
. OPTI ON defl =1. 2u nonod post =2
+ relv=le-3 absvar=.5 relvar=.01

Circuit Input

.global Ignd |vcc enb

.macro buff data out

nmpl DATAN DATA LVCC LVCC p w=35u
ml DATAN DATA LGND LGND n w=17u

mp2 BUS DATAN LVCC LVCC p w=wp2
M2 BUS DATAN LGND LGND n w=wn2
mp3 PEN PENN LVCC LVCC p w=wp3
m3 PEN PENN LGND LGND n w=wn3
mp4 NEN NENN LVCC LVCC p w=wp4
m4 NEN NENN LGND LGND n w=wn4

mp5 OUT PEN LVCC LVCC p w=wp5 | =1. 8u
m5 OUT NEN LGND LGND n w= wn5 | =1. 8u

mp10 NENN BUS LVCC LVCC p w=wpl0
m12 PENN ENB NENN LGND n w=wn10
m10 PENN BUS LGND LGND n w=wn10
mp1l NENN ENB LVCC LVCC p w=wpll
mp12 NENN ENBN PENN LVCC p w=wpll
m1l PENN ENBN LGND LGND n w=80u
mp13 ENBN ENB LVCC LVCC p w=35u
m13 ENBN ENB LGND LGND n w=17u

cbus BUS LGN\D 1. 5pf
cpad OQUT LGN\D 5. Opf

. ends

* * jnput signals *
vcc VCC G\D 5V

| vec vee |vee 6nh

| gnd | gnd gnd 6nh

vi n DATA LGND pl (Ov On, 5v 0.7n)
vi nb DATAbar LGN\D pl (5v On, Ov 0.7n)
ven ENB G\D 5V

Statistical Analysis and Optimization: Optimization Examples

12-59

** circuit **

x1 data out buff

cext1l out GND 50pf

x2 dat abar out bar buff
cext 2 out bar G\ND 50pf

Optimization Parameters

. par am
wp2=opt 1(70u, 30u, 330u)
wn2=opt 1(22u, 15u, 400u)
wp3=opt 1(400u, 100u, 500u)
wn3=opt 1(190u, 80u, 580u)
wp4=opt 1(670u, 150u, 800u)
wn4=opt 1(370u, 50u, 500u)
wp5=opt 1(1200u, 1000u, 5000u)
wn5=opt 1(600u, 400u, 2500u)
wpl10=opt 1(240u, 150u, 450u)
wnl1l0=opt 1(140u, 30u, 280u)
wpll=opt 1(240u, 150u, 450u)

+++++++++++

Control Section

.tran 1ns 15ns
.tran .5ns 15ns sweep optim ze=optl
+ resul ts=tfopt,tropt, rmspowo nodel =opt nod

** put soft limt for power with mnval setting (i.e. val ues
** | ess than 1000nw are | ess inportant)

.measure rnspowo rns power goal =100nmw m nval =1000nw
.mea tran tfopt trig v(data) val=2.5 rise=1 targ v(out)
+ val =2.5 fall=1 goal 5.0n

.mea tran tropt trig v(databar) val=2.5 fall=1 targ
+ v(outbar) val=2.5 rise=1 goal 5.0n

. model optnod opt itropt=30 nax=1le+5

.tran 1ns 15ns

* output section *

* plot tran v(data) v(out)
.plot tran v(databar) v(outbar)

Statistical Analysis and Optimization: Optimization Examples

12-60

Model Section

. MODEL N NMOS LEVEL=3 VTO=0.7 UO=500 KAPPA=.25 KP=30U

+ ETA=. 03 THETA=. 04 VMAX=2E5 NSUB=9E16 TOX=500E- 10

+ GAMVA=1.5 PB=0.6 JS=. 1M XJ=0. 5U LD=0. 0 NFS=1E11 NSS=2E10
+ CGS0=200P CGDO=200P CGEO=300P

. MODEL P PMOS LEVEL=3 VTO=-0.8 UO=150 KAPPA=.25 KP=15U

+ ETA=. 03 THETA=. 04 VMAX=5E4 NSUB=1. 8E16 TOX=500E- 10

+ NFS=1E11 GAMVA=. 672 PB=0.6 JS=. 1M XJ=0.5U LD=0.0

+ NSS=2E10 CGSO=200P CGDO=200P CGBO=300P

. end

Optimization Results

resi dual sum of squares 2. 388803E- 02

norm of the gradient = 0. 769765
mar quar dt scal i ng paraneter = 12624. 2
no. of function evaluations = 175
no. of iterations = 23

Optimization Completed

Paraneters relin= 1. 0000E-03 on last iterations
Optimized Parameters OPT1

* %or m sen % hange
. param wp?2 84.4981u $ 22.5877 -989.3733u

. param wn2 = 34.1401u $ 7.6568 -659.2874u

. param wp3 = 161.7354u $ 730.7865m -351. 7833u

. param wn3 = 248.6829u $ 8.1362 -2.2416m
. par am wp4 = 238.9825u $ 1.2798 -1.5774m
. param wn4 = 61.3509u $ 315.4656m 43.5213m
. param wp5 = 1.7753m $ 4.1713 2.1652m
. param wn5 = 1.0238m $ 5. 8506 413. 9667u

. param wpl0 = 268.3125u $ 8.1917 -2.0266m
. param wnl0 = 115.6907u $ 40.597 -422.8411u

. paramwpll = 153.1344u $ 482.0655m -30.6813m
*** optimze results neasure nanmes and val ues

* tfopt = 5. 2056n

* tropt = 5.5513n

* rmspowo = 200. 1808m

Statistical Analysis and Optimization: Optimization Examples
12-61

Figure 12-24 Tristate Buffer Optimization Circuit

[_ENB

VCC

vccC

vCcC

MP10

MN10

VC
4)_I % MP13
53
j{ Cenb MINL3

C

ENBN

Cenbn

MP5

Cpad

MN5

Cext

o o
tho] fot

Figure 12-25 Tristate Input/Output Optimization ACIC2B.TRO = Before
Optimization, ACIC2B.TR1 = Optimized Result

—Ar O <

—_

|
)

xTRI-STATE 1/0 OPTIMIZATION
14-0CT92 15:20: 8

. L . .
40N 6. 0N 8 . 0N 10.0N
TIME (LIN)D

te 0N

14 0N

T T8 psice TRY

ourT

OUTBAR
Eli

ASIC2.TRO

o —-— - _
OUTBAR
KR -

150N

Statistical Analysis and Optimization: Optimization Examples

12-62

BJT S Parameters Optimization

The following example optimizes the S parameters, to match those
specified for a set of measurements. The .DATA MEASURED in-line
data statement contains these measured S parameters, as a
function of frequency. The model parameters of the microwave
transistor (LBB, LCC, LEE, TF, CBE, CBC, RB, RE, RC, and IS) vary.
As a result, the measured S parameters (in the .DATA statement)
match the calculated S parameters, from the simulation results.

This optimization uses a 2n6604 microwave transistor, and an
equivalent circuit that consists of a BJT, with parasitic resistances
and inductances. The BJT is biased at a 10 mA collector current (0.1
mA base current at DC bias and bf=100).

Key HSPICE Features Used

« NET command, to simulate network analyzer action.
* AC optimization.
* Optimized element and model parameters.

* Optimizing, compares measured S parameters to calculated
parameters.

« S parameters, used in magnitude and phase (real and imaginary
available).

» Weighting of data-driven frequency, versus S parameter table.
Used for the phase domain.

Input Netlist File, for Optimizing BJT S Parameters

* BJTOPT. SP BJT S PARAMETER OPTI M ZATI ON
. OPTI ON ACCT NOMCOD POST=2

Statistical Analysis and Optimization: Optimization Examples
12-63

BJT Equivalent Circuit Input

* NET COMMAND AUTOMATI CALLY REVERSES THE SI GN OF THE PO/ER
* SUPPLY CURRENT, FOR NETWORK CALCULATI ONS
.NET | (VCE) |BASE ROUT=50 RI N=50

VCE VCE 0 10V

IBASE 0 IIN AC=1 DC=. 1MA

LBB || N BASE LBB

LCC VCE COLLECT LCC

LEE EM T 0 LEE

QL COLLECT BASE EM T T2N6604

. MODEL T2N6604 NPN RB=RB BF=100 TF=TF CJE=CBE CJC=CBC
+ RE=RE RC=RC | S=I S

. PARAM

LBB= OPT1(100P, 1P, 10N)

LCC= OPT1(100P, 1P, 10N)

LEE= OPT1(100P, 1P, 10N)

TF = OPT1(1N, 5P, 5N)

CBE= OPTL(.5P, .1P, 5P)

CBC= OPTL(.4P, .1P, 5P)

RB= OPT1(10, 1, 300)

RE= OPT1(.4, .01, 5)

RC= OPT1(10, .1, 100)

| S= OPT1(1E-15, 1E-16, 1E-10)

. AC DATA=MEASURED OPTI M ZE=OPT1

+ RESULTS=COWP1, COVP3, COVP5, COVP6, COVP?

+ MODEL=CONVERGE

++++++++++

. MODEL CONVERGE OPT RELI N=1E-4 RELOUT=1E-4 CLOSE=100
+ | TROPT=25

. MEASURE AC COMP1 ERRL PAR(S11M S11(M

. MEASURE AC COMP2 ERRL PAR(S11P) S11(P) M NVAL=10

. MEASURE AC COMP3 ERRL PAR(S12M S12(M

. MEASURE AC COMP4 ERRL PAR(S12P) S12(P) M NVAL=10

. MEASURE AC COMP5 ERRL PAR(S21M S21(M

. MEASURE AC COMP6 ERRL PAR(S21P) S21(P) M NVAL=10

. MEASURE AC COMP7 ERRL PAR(S22M S22(M

. AC DATA=MEASURED

.PRINT PAR(S11M S11(M PAR(S11P) S11(P)
.PRINT PAR(S12M S12(M PAR(S12P) S12(P)
.PRINT PAR(S21M S21(M PAR(S21P) S21(P)
.PRINT PAR(S22M S22(M PAR(S22P) S22(P)

Statistical Analysis and Optimization: Optimization Examples
12-64

. DATA MEASURED

FREQ SI11M
100ME .6
200ME . 56
500ME . 56
1000ME . 58
2000ME . 61
. ENDDATA

S11P

-52
-95
- 149
-174
159

S21M
19. 75
15. 30
7.69
4. 07
2.03

S21P S12M S12P S22M
148 .02 65 . 87
127 . 032 49 . 69
97 . 044 41 .45
77 . 061 42 .39
50 . 095 40 .39

S22P

21
33
41
47
70

. PARAM FREQ=100ME S11M=0, S11P=0, S21M=0, S21P=0, S12M=0,
+ S12P=0, S22M=0, S22P=0

. END

Optimization Results

RESI DUAL SUM OF SQUARES
NORM OF THE GRADI ENT

MARQUARDT SCALI NG PARAMVETER
CO. OF FUNCTI ON EVALUATI ONS
NO. OF | TERATI ONS

0. 340303
170
35

5.142639e- 02
6. 068882e- 02

The maximum number of iterations (25) was exceeded. However,

the results probably are accurate. Increase ITROPT accordingly.

Opti m zed Paraneters OPT1- Final Val ues

***OPTI M ZED

. PARAM LBB
. PARAM LCC
. PARAM LEE
. PARAM TF
. PARAM CBE
. PARAM CBC
. PARAM RB
. PARAM RE
. PARAM RC
. PARAM IS

PARAMETERS OPT1 SENS

1
2.
723.
12.
620.

1
2.
869.
54.
99.

5834N $ 27.3566X 2.
1334N $ 12.5835X 1.
0995P $254.2312X 12.
7611P $ 7.4344G 10.
5195F $ 23.0855G 1.
0263P $346.0167G 44.
0582 $ 12.8257M 2.
8714M $ 66.8123M 4.
2262 $ 3.1427M 20.
9900P $ 3.6533X 34.

YNORM SEN

4368
5138
3262
0532
5300
5016
3084
5597
7359
4463M

Statistical Analysis and Optimization: Optimization Examples
12-65

Figure 12-26 BJT-S Parameter Optimization

FILE BJTOPT.SP NETWORK S-PRARAMETER OPTIMIZATION
14-0CT9e 14:23:¢ |

ER — BITOPT _ACO
5 L gt MnG
21 -
LN 100 — PAR(S2INM
- gttt
19373
- BITOPT _ACO
? E 650 0N -= S11(MAG
toN = PAR(SIIM
600 0N SN EE U
550 . 0M -
Z BIJTOPT.ACO
g | B800.0M I SeR(MAG
21 o
>y 600 0M - PAR(SeRM
e
400 0N -
96 9250M BITOPT ACO
S L S12(MAG
1]
Y PARCST2M
50 0M g hhelet
I
20 0M 1 06 1 . 506
HERTZ (LIN) 2 06

BJT Model DC Optimization

The goal is to match forward and reverse Gummel plots, obtained
from a HP4145 semiconductor analyzer, using the True-Hspice
LEVEL=1 Gummel-Poon BJT model. Because Gummel plots are at
low base currents, HSPICE does not optimize the base resistance.
HSPICE also does not optimize forward and reverse Early voltages
(VAF and VAR), because simulation did not measure VCE data.

The key feature in this optimization is incremental optimization,

1. HSPICE first optimizes the forward-Gummel data points.

2. HSPICE updates forward-optimized parameters into the model.
After updating, you cannot change these parameters.

3. HSPICE next optimizes the reverse-Gummel data points.

Statistical Analysis and Optimization: Optimization Examples
12-66

BJT Model DC Optimization Input Netlist File

* 4k 4 kX

$.

FI LE OPT_BJT. SP BJT OPTI M ZATI ON T2N3947

OPTI M ZE THE DC FORWARD AND REVERSE CHARACTERI STI CS
FROM A GUMVEL PLOT

ALL DC GUMVEL- POON DC PARAMETERS EXCEPT BASE

RESI STANCE AND EARLY VOLTAGES OPTI M ZED

. TIGHTEN THE SI MULATOR CONVERCGENCE PROPERTI ES

. OPTI ON NOMOD | NGOLD=2 NOPAGE VNTOL=1E-10 POCST

+

$.

NUMDGT=5 RELI =1E-4 RELV=1E-4
. OPTI M ZATI ON CONVERGENCE CONTROLS

. MODEL OPTMOD OPT RELI N=1E-4 | TROPT=30 GRAD=1E-5 CLCSE=10

+

CUT=2 CENDI F=1E-6 RELOUT=1E-4 MAX=1E6

Room Temp Device

VBER BASE 0 VBE
VBCR BASE CCOL VBC
QL COL BASE 0 BJTMOD

Model and Initial Estimates

. MODEL BJTMOD NPN

++ + ++ 4+ + +

++0+ + &

ISS = 0. XTF = 1. NS = 1.

CJS = 0. VIS = 0.50000 PTF = O.
MIS = 0. EG = 1.10000 AF = 1.

| TF = 0.50000 VTF = 1.00000

FC = 0.95000 XCJC = 0.94836

SUBS =1

TF=0.0 TR=0.0 CJE=0.0 CJC=0.0 MIE=0.5 MIC=0.5 VJE=0.6
VJC=0. 6 RB=0.3 RC=10 VAF=550 VAR=300

. THESE ARE THE OPTI M ZED PARAMETERS
BF=BF |1 S=I S | KF=I KF | SE=I SE RE=RE
NF=NF NE=NE

. THESE ARE FOR REVERSE BASE OPT
BR=BR | KR=I KR | SC=I SC
NR=NR NC=NC

. PARAM VBE=0 I B=0 | C=0 VCE_EM T=0 VBC=0 IB_EM T=0 | C_EM T=0

+
+

BF= OPT1(100, 50, 350)
| S= OPT1(5E-15, 5E-16, 1E-13)

Statistical Analysis and Optimization: Optimization Examples
12-67

NF= OPT1(1.0, 0.9, 1.1)

| KF=OPT1(50E- 3, 1E-3, 1)

RE= OPT1(10, 0.1, 50)

| SE=OPT1(1E- 16, 1E-18, 1E-11)
NE= OPT1(1.5, 1.2, 2.0)

BR= OPT2(2, 1, 10)

NR= OPT2(1.0, 0.9, 1.1)

| KR=OPT2(50E- 3, 1E-3, 1)

| SC=OPT2(1E-12, 1E-15, 1E-10)
NC= OPT2(1.5, 1.2, 2.0)

++++++++++

. DC DATA=BASEF SWEEP OPTI M ZE=OPT1 RESULTS=I BVBE, | CVBE
+ MODEL=0PTMOD

. MEAS DC | BVBE ERR1 PAR(IB) 12(Ql) M NVAL=1E-14
+ | GNORE=1E- 16

.MEAS DC | CVBE ERR1 PAR(1C) 11(Ql) M NVAL=1E-14
+ | GNORE=1E- 16

. DC DATA=BASER SVEEP OPTI M ZE=OPT2 RESULTS=I BVBER, | CVBER
+ MODEL=0PTMOD

. MEAS DC | BVBER ERR1 PAR(1 B) 12(Ql) M NVAL=1E- 14 | GNORE=1E- 16
. MEAS DC | CVBER ERR1 PAR(I1 C) 11(Q1) M NVAL=1E- 14 | GNORE=1E- 16

. DC DATA=BASEF
.PRINT DC PAR(I1C) 11(Ql) PAR(IB) 12(Ql)

. DC DATA=BASER
.PRINT DC PAR(1C) 11(Ql) PAR(IB) 12(QL)

Optimization Results OPT1
RESI DUAL SUM OF SQUARES = 2. 196240E- 02

Optimized Parameters OPT1

+ YNORM SEN %€CHANGE

. PARAM BF = 1.4603E+02 $ 2. 7540E+00 -7. 3185E- 07
.PARAM | S = 2. 8814E-15 $ 3. 7307E+00 -5. 0101E- 07
. PARAM NF = 9. 9490E-01 $ 9. 1532E+01 -1. 0130E-08
. PARAM | KF = 8.4949E-02 $ 1. 3782E-02 -8. 8082E-08
. PARAM RE = 6. 2358E-01 $ 8.6337E-02 -3. 7665E- 08
.PARAM | SE = 5. 0569E-16 $ 1.0221E-01 -3. 1041E-05
. PARAM NE = 1.3489E+00 $ 1.7806E+00 2. 1942E-07

Statistical Analysis and Optimization: Optimization Examples
12-68

Optimization Results OPT2
RESI DUAL SUM OF SQUARES = 1.82776

Optimized Parameters OPT2

* ONORM SEN %6CHANGE

. PARAM BR = 1. 0000E+01 $ 1.1939E-01 1. 7678E+00

. PARAM NR = 9. 8185E-01 $ 1.4880E+01 -1.1685E-03
. PARAM | KR = 7.3896E-01 $ 1.2111E-03 -3.5325E+01
.PARAM | SC = 1. 8639E-12 $ 6. 6144E+00 -5. 2159E- 03
. PARAM NC = 1.2800E+00 $ 7.8385E+01 1.6202E-03

Figure 12-27 BJT Optimization Forward Gummel Plots

x FILE OPT_BJT.SP BIT OPTIMIZATION T2N3947
21-0CT92 17:54:25
- ' : ™ op1_ 81T SH0
- 7 ERET
10.0M T T rae—
z e = PARC(IB
- / . PR —
. oM T - © o= 1ot
- 'IxaPAR([c
A {o0.0u =T g
M : :
p z -
» f0.0U % T
L _ _
0 1 0U§ E
6 : :
foo.oN = E
- :
10.0N T T
. ON T r
— L L L Ll .I.I. 1. 1. 1. .I Al PR B 1. I J J L P I. I-_
too.op 500.0M 600 0M 700.0M 800 0M
400 0M BASEF (LIN) 820 . 0M

Statistical Analysis and Optimization: Optimization Examples
12-69

Figure 12-28 BJT Optimization Reverse Gummel Plots

@ o n T XD

x FILE OPT_BJT.SP BJT OPTIMIZATION T2N3347
2e-0CT92 10:17:43

OPT_BJT.S|1

oM = 12001
- PARCIB
oM = o—— —
= 110t
AT RARLIC
'0U§ . . .) . . E,gx
ou T T
e T
ON = B
ON =)
0N 2 =
OP -_ LI A 1. I 1 Al Al 1. I. LI} L 1 I LI} J A I. 1 Ll L 1. I LI B | 1 I-_
: 300.0M 400.0M 500.0M 600.0M 700.0M 800.0M
200.0M BASER (LIN) 800.0M

Optimizing GaAsFET Model DC

This example circuit is a high-performance, GaAsFET transistor. The
design target is to match HP4145 DC measured data, to the True-
Hspice LEVEL=3 JFET model.

The HSPICE strategy is:

« MEASURE IDSERR is an ERRL1 type function. It provides linear
attenuation of the error results, starting at 20 mA. This function
ignores all currents below 1 mA. The high-current fit is the most
important for this model.

 The OPTL1 function simultaneously optimizes all DC parameters.
 The .DATA statement merges TD1.dat and TD2.dat data files.

» The graph plot model sets the MONO=1 parameter, to remove
the retrace lines from the family of curves.

Statistical Analysis and Optimization: Optimization Examples

12-70

GaAsFET Model DC Optimization Input Netlist File

*FI LE JOPT. SP JFET OPTI M ZATI ON
. OPTI ON ACCT NOMCD POST

+ RELI =2E-4 RELV=2E-4

VG GATE 0 XVGS

VD DRAI'N O XVDS

J1 DRAIN GATE 0 JFETN1

. MODEL JFETN1 NJF LEVEL=3 CAPCP=1 SAT=3
NG=1

CGS=1P CGD=1P RG=1

VTO=VTO BETA=BETA LAMBDA=LAMBDA
RS=RDS RD=RDS | S=1E-15 ALPHA=ALPHA
UCRI T=UCRI T SATEXP=SATEXP

GAMDS=GAMDS VGEXP=VCGEXP

+ + + + + +

. PARAM
VTO=0PT1(-. 8, - 4, 0)
VGEXP=0PT1(2, 1, 3. 5)
GAMDS=OPT1(0, - . 5, 0)

BETA= OPT1(6E-3, 1E-5, 9E-2)
LAVBDA=CPT1(30M 1E- 7, 5E- 1)
RDS=CPT1(1, . 001, 40)
ALPHA=OPT1(2, 1, 3)

UCRI T=OPT1(. 1, . 001, 1)
SATEXP=OPT1(1, .5, 3)

+ 4+ ++++ 4+ +

. DC DATA=DES| RED OPTI M ZE=OPT1 RESULTS=I DSERR MODEL=CONV

. MODEL CONV OPT RELI N=1E-4 RELOUT=1E-4 CLOSE=100 | TROPT=25
. MEASURE DC | DSERR ERRL PAR(XIDS) | (J1) M NVAL=20M

+ | GNORE=1M

. DC DATA=DES| RED

. GRAPH PAR(XI DS) 1 (J1)

. MODEL GRAPH PLOT MONO=1

. PRINT PAR(XVGS) PAR(XIDS) | (J1)

. DATA DESI RED MERGE

+ FI LE=JDC. DAT XVDS=1 XVGS=2 XI DS=3
. ENDDATA

. END

Optimization Results

RESI DUAL SUM OF SQUARES = 7. 582202E-02

Statistical Analysis and Optimization: Optimization Examples
12-71

Optimized Parameters Optl

* ONORM- SENVCHANGE

. PARAM VTO= -1.1067 % 64. 6110 43. 9224M

. PARAM VGEXP= 2. 9475 $ 13. 2024 219. 4709M
. PARAM GAMDS= 0. $ 0. 0.

. PARAM BETA = 11.8701M $ 17. 2347 136. 8216M
. PARAM LAVMBDA= 138. 9821M $ 2.2766 -1.5754

. PARAM RDS= 928. 3216M $ 704.3204M 464. 0863M

. PARAM ALPHA= 2. 2914 $ 728.7492M 168. 4004M
. PARAM UCRI T= 1. 0000M $ 18. 2438M - 125. 0856

. PARAM SATEXP= 1. 4211 $ 1. 2241 2.2218

Figure 12-29 JFET Optimization

xFILE JOPT.SP JFET OPTIMIZATION
4-NOV92 15:33: |
- : : B
45 OM : o // JOPT.Sf0
. /// A PAR(XIDS
[(J1
Q0.0M: - O— — —
- — -
- . /_/ . -
35 . 0M T : s T
P - V. -
2 30.0M = YA ==
A - / ___— :
z . _—— -
M 25 0M = / e ' =
I - - . - Z
20.0M i i o i R
N z . z
15.0M = // B — T
10.0M / / I —=
5.0M__/' =
W= — :
0] a1 A .I.I. 1. Ll L P I.) a1 L .|.I. 1. Ll O |.J
. {.0 2.0 3.0
0. DESIRED (LIN) 4.0

Statistical Analysis and Optimization: Optimization Examples
12-72

Optimizing MOS Op-amp

The design goals for the MOS operational amplifier are:

* Minimize the gate area (and therefore the total cell area).
* Minimize the power dissipation.

* Open-loop transient step response of 100 ns, for rising and falling
edges.

The HSPICE strategy is:

« Simultaneously optimize two amplifier cells, for rising and falling
edges.

» Total power is power for two cells.

« The optimization transient analysis must be longer, to allow for a
range of values in intermediate results.

« All transistor widths and lengths are optimized.

« Calculate the transistor area algebraically, use a voltage value,
and minimize the resulting voltage.

 The transistor area measure statement uses MINVAL, which
assigns less weight to the area minimization.

* Optimizes the bias voltage.

MOS Op-amp Optimization Input Netlist File

AVPOPT. SP MOS OPERATI ONAL AMPLI FI ER OPTI M ZATI ON

. OPTI ON RELV=1E-3 RELVAR=. 01 NOMOD ACCT POST

. PARAM VDD=5 = VREF=' VDD 2’

VDD VSUPPLY 0 VDD

VI N+ VI N+ 0 PW.(O ,’' VREF-10M 10NS ' VREF+10M)
VI NBAR+ VI NBAR+ 0 PW.(O0 ,’ VREF+10M 10NS ’ VREF- 10M)
VIN- VI N 0 VREF

VBI AS VBI AS 0 BI AS

. GLOBAL VSUPPLY VBI AS

XRI SE VI N+ VIN- VOUTR AMP

Statistical Analysis and Optimization: Optimization Examples
12-73

CLOADR VQUTR 0O . 4P
XFALL VI NBAR+ VI N- VOUTF AMP
CLOADF VOQUTF O . 4P

. MACRO AMP VI N+ VIN- VOUT

ML 2 VI N 3 3 MOSN WWML L=LM
M 4 VI N+ 3 3 MOSN WWML L=LM
M3 2 2 VSUPPLY VSUPPLY MOSP WAWML L=LM
M 4 2 VSUPPLY VSUPPLY MOSP WWML L=LM
Mo VOUT VBIAS O 0 MOSN WEWWVG L=LM
M VOUT 4 VSUPPLY VSUPPLY MOSP WEWWVG L=LM
M7 3 VBl AS 0 0 MOSN WWM7 L=LM
. ENDS

. PARAM AREA=" 4*\WML* LM + WWb* LM + WWB* LM + WW7* LM
VX 1000 0 AREA
RX 1000 0 1K

. MODEL MOSP PMOS (VTO=-1 KP=2.4E-5 LAMBDA-. 004
+ GAMMA =. 37 TOX=3E-8 LEVEL=3)

. MODEL MOSN NMOS (VTO=1. 2 KP=6. 0E-5 LANMBDA-. 0004
+ GAMMA =. 37 TOX=3E-8 LEVEL=3)

. PARAM WML=0OPT1(60U, 20U, 100U)
WVb=COPT1(40U, 20U, 100U)
WV6=CPT1(300U, 20U, 500U)
WW7=0PT1(70U, 40U, 200V)

LM=OPT1(10U, 2U, 100U)

Bl AS=OPT1(2.2,1. 2, 3.0)

+ + + + +

. TRAN 2. 5N 300N SWEEP OPTI M ZE=0PT1
+ RESULTS=DELAYR, DELAYF, TOT_PO\ER, AREA MODEL=0PT
. MODEL OPT OPT CLOSE=100

. TRAN 2N 150N
. MEASURE DELAYR TRI G AT=0 TARG V(VOUTR) VAL=2.5 RI SE~1
+ GOAL=100NS

. MEASURE DELAYF TRI G AT=0 TARG V(VOUTF) VAL=2.5 FALL=1
+ GOAL=100NS

. MEASURE TOT_POVER AVG POWER GOAL=10MW

. MEASURE AREA M N PAR(AREA) GOAL=1E-9 M NVAL=100N
.PRINT V(VIN+) V(VOUTR) V(VOUTF)

. END

Statistical Analysis and Optimization: Optimization Examples
12-74

Optimization Results

RESI DUAL SUM OF SQUARES = 4.654377E-04
NORM OF THE GRADI ENT = 6. 782920E-02

Optimized Parameters Optl

* ONORM SENYECHANGE

. PARAM WML = 47.9629U $ 1.6524 -762.3661M
. PARAM Wb = 66.8831U $ 10.1048 23. 4480M
. PARAM W/B = 127.1928U $ 12.7991 22.7612M
. PARAM W7 = 115.8941U $ 9.6104 -246.4540M
. PARAM LM = 6.2588U $ 20.3279 -101.4044M
. PARAM BI AS = 2.7180 $ 45.5053 5. 6001M
*** OPTI M ZE RESULTS MEASURE NAMES AND VALUES
* DELAYR = 100. 4231N
* DELAYF = 99.5059N
* TOT_POVER = 10.0131M
* AREA = 3.1408N

Figure 12-30 CMOS Op-amp

vsupply

e e T

L 4 vout

vin- —‘ ﬁ M1 M2 }7 vin+ _‘ M5

vbias _»—{ M7

Statistical Analysis and Optimization: Optimization Examples
12-75

Figure 12-31 Operational Amplifier Optimization

— o<

—

W

AOL
TT1
TAN

3.9677

6. 40M

6.20M

5.80M

5.60M

5. 40M

ey
N
!

[
SON
TIME

i [. .
750N 100 .

(LIND

J
‘)
oo b _LGE (AR

AMPOPT .SP MOS OPERATIONAL AMPLIFIER OPTIMIZATION
14-0CT92 17:56:35
_ T — L — P
- . —a
_ SN _
- N B
- ,//_
R ‘///
— . /‘
-
— //)
- I I ‘ I

o
Z -
Do‘\d‘“““““

AMPOPT _TRO
VIN-

VIVOUTR
Ei

VIVOUTF
97 ,,,,, J—

AMPOPT _TRO
POWER

S ON

Statistical Analysis and Optimization: Optimization Examples

12-76

13

Running Demonstration Files

This chapter contains examples of basic file construction
techniques, advanced features, and simulation tricks. It also lists and
describes several Synopsys HSPICE input files.

This chapter explains the following topics:

 Using the Demo Directory Tree
 Two-Bit Adder Demo

¢ MOS I-V and C-V Plotting Demo

« CMOS Output Driver Demo
 Temperature Coefficients Demo

« Simulating Electrical Measurements
 Modeling Wide-Channel MOS Transistors

 Demonstration Input Files

13-1

Using the Demo Directory Tree

Demonstration Input Files on page 13-24 lists demonstration files,
which are designed as good training examples. Most HSPICE
distributions include these examples in the demo directory tree,
where $installdir is the installation directory environment variable:

Table 13-1 Demo Directory Tree

Directory File Description
$installdir/demo/hspice | /alge algebraic output
lapps general applications

/behave | analog behavioral components

/bench standard benchmarks

/bjt bipolar components

/cchar characteristics of cell prototypes

[ciropt circuit level optimization

/ddl Discrete Device Library

/devopt | device level optimization

/fft Fourier analysis

[filters filters

/mag transformers, magnetic core components
/mos MOS components

frad radiation effects (photocurrent)

/sources | dependent and independent sources

[tline filters and transmission lines

Running Demonstration Files: Using the Demo Directory Tree
13-2

Two-Bit Adder Demo

This two-bit adder shows how to improve efficiency, accuracy, and
productivity in circuit simulation. The adder is in the $installdir/demo/
hspice/apps/mos2bit.sp demonstration file. It consists of two-input
NAND gates, defined using the NAND sub-circuit. CMOS devices
include length, width, and output loading parameters. Descriptive
names enhance the readability of this circuit.

One-Bit Subcircuit

The ONEBIT subcircuit defines the two half adders, with carry in and
carry out. To create the two-bit adder, HSPICE uses two calls to
ONEBIT. Independent piecewise linear voltage sources provide the
input stimuli. The R repeat function creates complex waveforms.

Figure 13-1 One-bit Adder sub-circuit
inl

in2

— out
half1 X8 D
4
. half2
carry-in " xe o

#1_nand L] carry-out
X9

Running Demonstration Files: Two-Bit Adder Demo
13-3

Figure 13-2 Two-bit Adder Circuit

AJ0] B|[0] Al1] B[|1]
carry-in — One Bit One Bit [— carry-out_2
| carry-out_1 |
C[0] C[1]

Figure 13-3 1-bit NAND Gate Binary Adder

inl

in2

carry-in

| carry-out
#1 nand X9)o

MOS Two-Bit Adder Input File

*FI LE: MOS2BI T. SP - ADDER - 2 BI T ALL- NAND- GATE Bl NARY ADDER
. OPTI ON ACCT NOMOD FAST autostop scal e=1u gm ndc=100n
.param | mn=1.25 hi=2.8v | 0=.4v vdd=4.5
. gl obal vdd
. TRAN . 5NS 60NS
.graph TRAN V(c[O0]) V(carry-out_1) V(c[1]) V(carry-out_2)
+ par(’ V(carry-in)/6 + 1.5")
+ par(’V(a[0])/6 + 2.0")
+ par(’V(b[0])/6 + 2.5") (0,5)
. MEAS PROP- DELAY TRI G V(carry-in) TD=10NS VAL=' vdd*.5’
Rl SE=1

+TARG V(c[1]) TD=10NS VAL='vdd*.5 RI SE=3
. MEAS PULSE-W DTH TRI G V(carry-out _1) VAL='vdd*.5" Rl SE=1
+ TARG V(carry-out 1) VAL="vdd*.5 FALL=1

Running Demonstration Files: Two-Bit Adder Demo

13-4

. MEAS FALL-TI ME TRI G V(c[1]) TD=32NS VAL='vdd*.9" FALL=1

+ TARG V(c[1l]) TD=32NS VAL='vdd*.1 FALL=1
vdd vdd gnd DC vdd
X1 A[0] B[O] carry-in C0] carry-out_1 ONEBIT

X2 A 1] B[1l] carry-out_ 1 (1] carry-out_2 ONEBIT
sub-circuit Definitions
. subckt NAND inl in2 out wp=10 wn=5
ML out inl vdd vdd P Wewp L=l m n ad=0
M2 out in2 vdd vdd P Wewp L=l m n ad=0
M3 out inl md gnd NWw L=Imn as=0
Mt mdin2 gnd gnd N Wwn L=l m n ad=0
CLOAD out gnd ' wp*5. 7f’
. ends

* switch nodel equivalent of the NAND. G ves a 10 tines

* speedup over the MOS version

. subckt NANDx inl in2 out wp=10 wn=5
Gl out vdd vdd inl LEVEL=1 M N=1200 MAX=1MEG 1. MEG - . 5MEG
& out vdd vdd i n2 LEVEL=1 M N=1200 MAX=1MEG 1. MEG - . 5MEG
G3 out md inl gnd LEVEL=1 M N=1200 MAX=1MEG 1. MEG - . 5MEG
&4 midgnd in2 gnd LEVEL=1 M N=1200 MAX=1MEG 1. MEG - . 5MEG
cout out gnd 300f

. ends

.subckt ONEBIT inl in2 carry-in out carry-out
X1l inl in2 #1 nand NAND
X2 inl #1 nand 8 NAND
X3 in2 #1 nand 9 NAND
X4 8 9 10 NAND
X5 carry-in 10 hal f1 NAND
X6 carry-in halfl hal f 2 NAND
X7 10 hal f 1 13 NAND
X8 hal f2 13 out NAND
X9 halfl #1 nand carry-out NAND
. ENDS ONEBI T

Stimuli

V1 carry-ingnd PAL(ONS, I o INS, hi 7.5NS, hi 8.5NS, 10 15NSIo R
V2 Al 0] gnd PW. (ONS, hi INS,I o0 15.0NS, |0 16.0NS, hi 30NS hi R
V3 Al 1] gnd PW. (ONS, hi INS,Io0 15.0NS, |0 16.0NS, hi 30NS hi R
V4 B[0] gnd PW. (ONS, hi INS,10 30.0NS,10 31.0NS, hi 60NS hi
V5 B[1] gnd PW. (ONS, hi 1INS,10 30.0NS,10 31.0NS, hi 60NS hi

Running Demonstration Files: Two-Bit Adder Demo
13-5

Models

. MODEL N NMOS LEVEL=3 VTO=0.7 UGO=500 KAPPA=. 25 KP=30U
+ ETA=. 01 THETA=. 04 VMAX=2E5 NSUB=9E16 TOX=400 GAMVA=1.5
+ PB=0.6 JS=. 1M XJ=0.5U LD=0.1U NFS=1E11 NSS=2E10
+ RSH=80 CGJ=.3M MI=0.5 CISW. 1IN MJISW0. 3 acm=2 capop=4
. MODEL P PMOS LEVEL=3 VTO=-0.8 UO=150 KAPPA=. 25 KP=15U
+ ETA=. 015 THETA=. 04 VMAX=5E4 NSUB=1. 8E16 TOX=400

+ GAMMA=. 672 PB=0.6 JS=. 1M XJ=0. 5U LD=0. 15U

+ NFS=1E11 NSS=2E10 RSH=80 CJ=. 3M MI=0.5 CJISW:. 1IN

+ MISWE0. 3 acn=2 capop=4

. END

MOS I-V and C-V Plotting Demo

To diagnose a simulation or modeling problem, you usually need to
review the basic characteristics of the transistors. You can use this
demonstration template file, $installdir/demo/hspice/mos/
mosivcv.sp, with any MOS model. The example shows how to easily
create input files, and how to display the complete graphical results.
The following features aid model evaluations:

Table 13-2 MOS I-V and C-V Plotting Demo

Value

Description

SCALE=1u | Sets the element units to microns (not meters). Most circuit designs use microns.

DCCAP

Forces HSPICE to evaluate the voltage variable capacitors, during a DC sweep.

node names | Makes a circuit easy to understand. Symbolic name contains up to 16 characters.

.GRAPH

.GRAPH statements create high-resolution plots. To set additional
characteristics, add a graph model.

Running Demonstration Files: MOS |-V and C-V Plotting Demo

13-6

Plotting Variables

Use this template to plot internal variables, such as:

Table 13-3 Demo Plotting Variables

Variable Description

i(mnl) i1, 2, i3, or i4 can specify the true branch currents, for each transistor node.

LV18(mn6) | Total gate capacitance (C-V plot).

LX7(mnl) GM gate transconductance. (LX8 specifies GDS, and LX9 specifies GMB).

Figure 13-4 MOS IDS Plot

*FILE: NOGEBIT. 3P TAD BLT HOS ROOER
L5-0CT92 111181 %6
- - -t — .."-'_|__E
% suE"—vql Y ,-’l.’ rv,.f’l:’ Iru HE :?E?EDET.THI]
T op T3 7= gresmeranr
z N . ! l . !J .|| - vrcrtl
s.su:—i_ R R Srwlpe T e —
\ = . || I e
0 3. [| ii"]l“f“—‘““-—'—?—rl‘ Fob = FARLYICARRT-
L : Sy = oo
T S T IR L || J| A TIITICI Y
2 800 % ° rrEe = P ,—;-I}-” e e ————
L I) L ! | - PARI¥IBLAINY
I j‘_ o e . I.I|_|__L___'___‘|I II [:l T ——————
- A Y D e i e e U 'y £ A
P S T R S |I W P
R i L
N Qb LE
R e A
500 qH T "1 - l.:Jhﬁ C fU‘l:—_
2o : S U
1. ——rr— '|“ﬂ—1-ll:-“ill"1"\"|—r—|—'rf'jr' 4 "'I:'_II =
Jo. 0N 30_0H E0.0N
n. TIHE (LIH2 BO. DN

Running Demonstration Files: MOS |-V and C-V Plotting Demo
13-7

Figure 13-5 MOS VGS Plot

- -

1801

1801

140.10

ign. 0

ai.id

B

d0.0

g2n.10

=

—_—— ———

HOSLYCY . SWa
I_YE--1

I_¥E--2
=

P,

= '

¥OLTS CLIHD

=F[LE: HOSIYCY_ P 10%. YRS. CY AMD GH PLOTSH
LS-0CcT3g& 111480 %
I---.:f-_ - i -
J{ - : -
.f '
P e
T e —— e T T T S
-~
= !.I _I.! C g E P -
1.1 g.1 3.0

P h IlilllhlhlillliJILiLIéjIIJiJIJiJIIJIJIiI#

=

Figure 13-6 MOS GM Plot

xFILE

MOSIVCY .SP

59.5867U

55.

50 .

45 .

40.

35.

30.

25 .

20.

o0u

ou

ou

o0u

o0u

ou

ou

o0u

.ou

.0U

.0U

R N N N N N RN R R

IDS

CY AND GM PLOTS- . 1IN MJSW-O,SUUI,VG-'q‘-I[MP
24-NOV92 {3:42:46

[T o
2.0 3.
VOLTS (LIN)

0

Il
]
/

g AWHJ\H\“\\d\LHXH\A\U\LH\“\H\LH\“

o

vl

MOSTVCY .S
GM_N

@

=

|
‘v

Running Demonstration Files: MOS |-V and C-V Plotting Demo

13-8

Figure 13-7 MOS C-V Plot

xFILE: MQOSIVCV.SP 1DS. VBS, CV AND GM PLOTS- {N MJS|-0.3000_V6--4"'-1(MP
24-NOV92 13:42:46

13.7940F
- -TOT_N
13.

— —
~ =] — n
o o o o o
al el al el al
|||||||/|r|||||||||||||||||||||||||||||||

w
o
-

e}
o
-

woloaa v bova vl va v bevva bavan Loaa l.lll,ltg

o
o
-

1 I\le I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1
{.0 2.0 3.0 4.0
VOLTS (LIN)

=1
o1
=3

MOS I-V and C-V Plot Example Input File

*FI LE: MOSIVCV. SP | DS, VGS, CV AND GM PLOTS

. OPTI ON SCALE=1U DCCAP

.DC VDDN 0 5.0 .1 $VBBN O -3 -3 sweep supplies

. PARAM w=8 LL=2

$ ids-vds curves

CGRAPH ' | _VG=1' =I(MN1) 1 _VG=2' =l (M) '|_VG=3' =l (MB3)
+ 1 VG4 =l (M)

CGRAPH ' | _VG=-1"=I(MP1) '| _VG=-2'=I(MP2) '|_VG=-3' =l (MP3)
+ '] _VG=-4 =l (MP4)

$ ids-VGs curves

.GRAPH | VD=.5 =l (M\6) | _VD=-.5 = (MP6)

$ gate caps (cgs+cgd+cgb)

. GRAPH ’ CG TOT_N =LX18(M\6) ’ CG TOT_ P’ = LX18(MP6)

$ gm

. GRAPH ’ GM N =LX7(MN\B) ’ GM P’ =LX7(MP6)

VDDN vdd_n gnd 5.0

VBBN vbb_n gnd 0.0

Running Demonstration Files: MOS |-V and C-V Plotting Demo
13-9

EPD vdd _p gnd vdd_n gnd -1 $ reflect vdd for P devices
EPB vbb_p gnd vbb_n gnd -1 $ reflect vbb for P devices
V1 vgl gnd 1

V2 vg2 gnd 2

V3 vg3 gnd 3

V4 vg4 gnd 4

V5 vddlow n gnd .5

V-1 vg-1 gnd -1

V-2 vg-2 gnd -2

V-3 vg-3 gnd -3

V-4 vg-4 gnd -4

V-5 vddlow p gnd -.5

MN1 vdd_n vgl gnd vbb _n N Weww L=LL
MN2 vdd_n vg2 gnd vbb_n N Weww L=LL
WMN3 vdd_n vg3 gnd vbb_n N Weww L=LL
M4 vdd_n vg4 gnd vbb_n N Weww L=LL

MP1 gnd vg-1 vdd p vbb p P W

MP2 gnd vg-2 vdd p vbb p P Weww L=LL

MP3 gnd vg-3 vdd _p vbb p P Weww L=LL

MP4 gnd vg-4 vdd_p vbb_p P Weww L=LL

MN6 vddl ow n vdd_n gnd vbb_n N Weww L=LL

MP6 gnd vdd_p vddlow p vbb_p P Weww L=LL

.MODEL N NMOS LEVEL=3 VTO=0.7 UO=500 KAPPA=.25 ETA=.01
+ THETA=. 04 VMAX=2E5 NSUB=9E16 TOX=400 KP=30U GAMWA=1.5
+ PB=0.6 JS=.1M XJ=0.5U LD=0.1U NFS=1E11 NSS=2E10

+ RSH=80 CJ=.3M MI=0.5 CISWE. 1IN MISWF0.3 acnm=2 capop=4
. MODEL P PMOS LEVEL=3 VTO=-0.8

UO=150 KAPPA=.25 KP=15U

+ ETA=. 015 THETA=. 04 VMAX=5E4 NSUB=1. 8E16 TOX=400 GAWMMVA=. 67
+ PB=0.6 JS=.1M XJ=0.5U LD=0. 15U NFS=1E11 NSS=2E10

+ RSH=80 (CJ=.3M MJ=0.5 CISW:. 1IN

MISWEO. 3 acn=2 capop=4

. END

CMOS Output Driver Demo

ASIC designers need to integrate high-performance IC parts onto a
printed circuit board (PCB). The output driver circuit is critical to the
performance of the system. The demonstration file, $installdir/demo/
hspice/apps/asicl.sp shows models for an output driver, the bond
wire and leadframe, and a six-inch length of copper transmission
line.

Running Demonstration Files: CMOS Output Driver Demo

13-10

This simulation demonstrates how to:

« Define parameters, and measure test outputs.

* Use the LUMP5 macro to input geometric units, and convert
them to electrical units.

 Use .MEASURE statements to calculate the peak local supply
current, voltage drop, and power.

« Measure RMS power, delay, rise times, and fall times.

« Simulate and measure an output driver under load. The load
consists of:

- Bondwire and leadframe inductance.

- Bondwire and leadframe resistance.

- Leadframe capacitance.

- Six inches of 6-mil copper, on an FR-4 printed circuit board.

- Capacitive load, at the end of the copper wire.

Strategy
The HSPICE strategy is to:

» Create a five-lump transmission line model, for the copper wire.

» Create single lumped models, for leadframe loads.

Running Demonstration Files: CMOS Output Driver Demo
13-11

Figure 13-8 Noise Bounce

=F[LE: HOZIYEY _3F 10%_ YHO. O¥ AMD GH PLOTS
LS-0CcTaEe 11:4E0 %

53 G367

EE . 0L

So.au

35 .0

d0.al

=r

a5 .1l

E RN

an.au
g5 .1l
go.au
15.0U
in.al

5.4l

[T T R (N T T (R T (N T TR SR S |
1.1 2.1 a_o 4._0
0. YOLTS CLIHI

tilril e

A|U|LH|H|H|LH|H

achicolo hienlen

ol
=

Figure 13-9 Asicl.sp Demo Local Supply Voltage

sFILE: HOSIYCY_ %P 1D%. YEB. C¥ AMD GH PLOTS
L5-0CT3E 13113018

LE . Fatdr

13.0F

12 . 0F

11.0F

e

10.0F

= -

(=]
=
-

-3
=
-
III|III-._!_;-|"III
'

1.1 2.1 3.0 3.0
¥OLTS CLIKD

=

wilawr Lol veer b beros lovee Lo ol o

o
'
=

HOSIYCY SWa
CE-TOT_N

CE-TOT-F
F———

Running Demonstration Files: CMOS Output Driver Demo
13-12

Figure 13-10 Asicl.sp Demo Local Supply Current

=FILE: ASIC].5F BROUND BOUWCE FOR 170 CHOS DRIVER
LS-0CTS92 1319@135

5.33E1

- | | A | et T
Tl _ _ T
5_n"""l'|l)'ﬁ,wﬂu1ﬂ’ﬁ°v'”‘%"l"\' I/Hf \Jﬁ ".ll'fqi\l"f ge

|
e oM

1.1
Y
1]
L
T 3.
L
I
H 2.1

P b Do b Mg n

N A R N A R N B R
E.0H LD.ON 15_OH gl .0H gh . ON
0. TIHE (LIH2 E]|

Figure 13-11 Asicl.sp Demo Input and Output Signals

eFILE: A3[C] 5P BROUND BOUWCE FOR 140 CHD3 DRIVER
LS-0CTS2 13138135

RSICL.TRD
POYER

o
e
o
=
=

o
=
=
=
=

PARLABSCICYD
B———

Min
-3
o
=
=

n n
n m
m (=3
= =
x =

n
=
=
=
=

ETH- rm—O— —— T
P i

- = n o ~-a

o = m = o

S e B S =

=X = = = =

o
=
=
E

2h . 1K

-y
E.0H LO.ON 16.ON 20 .0H 26 . 0N
n. TIHE (LIHI 0. DN

Running Demonstration Files: CMOS Output Driver Demo

13-13

CMOS Output Driver Example Input File

FILE: ASICL. SP
SI MULATE AN OUTPUT DRI VER DRI VI NG 6 | NCHES OF 6M L PRI NTED
Cl RCU T BOARD COPPER W TH 25PF OF LOAD CAPACI TANCE

MEASURE PEAK TO PEAK GROUND VOLTAGE

MEASURE MAXI MUM GROUND CURRENT

MEASURE MAXI MUM SUPPLY CURRENT

GROUND BOUNCE FOR | / O CMOS DRI VER 1200/ 1. 2 & 800/ 1. 2 M CRONS
. OPTI ON POST=2 RELVAR=. 05

. TRAN . 25N 30N

. MEASURE | VDD_MAX MAX PAR(’ ABS(1 (VD))’)

. MEASURE | VSS_MAX MAX PAR(’ ABS(1(VS))’)

. MEASURE PEAK_GNDV PP V(LVSS)

. MEASURE PEAK_|VD PP PAR(’ ABS(I (VD) *V(VDD, OUT)))
. MEASURE PEAK_IVS PP PAR(’ ABS(I(VS)*V(VSS, OUT)))
. MEASURE RVM5_POVER RMS POVER

. MEASURE FALL_TIME TRIG V(IN) RI SE=1 VAL=2.5V

+ TARG V(OUT) FALL=1 VAL=2.5V
.MEASURE RISE_TIME TRIG V(IN) FALL=1 VAL=2.5V

+ TARG V(OUT) RI SE=1 VAL=2.5V

. MEASURE TLINE DLY TRI G V(OUT) RI SE=1 VAL=2.5V

+ TARG V(OUT2) RISE=1 VAL=2.5V

* % ¥ X X X

Input Signals

VIN IN LGND PW.(ON 0OV, 2N 5V, 12N 5, 14N 0)
* QUTPUT DRI VER

MP1 LQUT IN LVDD LVDD P W1400U L=1.2U

MN1 LOUT IN LVSS LVSS N W800U L=1. 2U

xout LOUT OUT LEADFRAME

*PONER AND GROUND LI NE PARASI Tl CS

Vd VDD GN\D 5V

xdd vdd | vdd | eadfrane

Vs VSS gnd Ov

XSS vss | vss | eadfrane

*QUTPUT LQADI NG —3 INCH FR-4 PC BOARD + 5PF LOAD +
*3 INCH FR-4 + 5PF LQAD

XLOAD1I OUT QUT1 GND LUWP5 LEN=3 W D=. 006
CLOAD1L QUT1 GND 5PF

XLOAD2 QUT1 OUT2 GND LUWP5 LEN=3 W D=. 006
CLOAD2 QUT2 GN\D 5PF

Running Demonstration Files: CMOS Output Driver Demo
13-14

.hmacro | eadfranme i n out
rfrane in md .01

| frane m d out 10n
cfrane md gnd .5p

. ends

*Transm ssion Line Paraneter Definitions

. param r ho=. 6mho/ sq cap=.55nf/in**2 i nd=60ph/ sq

*The 5-1unp macro defines a paraneterized transm ssion |ine
.macro lunp5 in out ref len_|unp5=1 wid_|unp5=.1

. pr ot
.paramreseff="1en_|l unp5*rho/w d_| unp5*5’
+ capeff="1len_|l unp5*w d_I unp5*cap/ 5’
+ I ndeff="1en_Il unp5*i nd/wi d_I unp5*5’

riinl reseff

cl 1 ref capeff
1 12 i ndef f
r2 2 3 reseff
c2 3 ref capeff
| 2 34 i ndef f
r3 4 5 reseff
c3 5 ref capeff
| 3 56 i ndef f
r4 6 7 reseff
c4 7 ref capeff
| 4 7 8 i ndef f
rs 8 9 reseff
c5 9 ref capeff
| 5 9 out indeff
. unpr ot

. ends

Model Section

. MODEL N NMOS LEVEL=3 VTO=0.7 UO=500 KAPPA=.25 ETA=.03

+ THETA=. 04 VMAX=2E5 NSUB=9E16 TOX=200E- 10 GAMVA=1. 5 PB=0. 6
+ JS=. 1M XJ=0.5U LD=0. 0 NFS=1E11 NSS=2E10 capop=4

. MODEL P PMOS LEVEL=3 VTO=-0.8 UO=150 KAPPA=.25 ETA=. 03

+ THETA=. 04 VMAX=5E4 NSUB=1. 8E16 TOX=200E- 10 GAMVA=. 672

+ PB=0.6 JS=. 1M XJ=0.5U LD=0.0 NFS=1E11 NSS=2E10 capop=4

. end

| VDD_MAX = 0.1141 AT= 1. 7226E- 08
FROVE 0. O000E+00 TO= 3. 0000E- 08
| VSS_NMAX = 0. 2086 AT= 3. 7743E- 09

FROVE 0. O000E+00 TO= 3. 0000E- 08

Running Demonstration Files: CMOS Output Driver Demo
13-15

PEAK_GN\DV = 3. 221 FROV= 0. 0O0O00E+00 TO= 3. 0000E-08
PEAK_IVD = 0.2929 FROVE 0. 0O0O00OE+00 TO= 3. 0000E-08
PEAK_I'VS = 0.3968 FROVE 0. 0O0O00OE+00 TO= 3. 0000E-08
RMVS_POVER = 0. 1233 FROVE 0. 0O0O00OE+00 TO= 3. 0000E-08
FALL_TIME = 1. 2366E-09 TARG= 1.9478E-09 TRIG= 7.1121E-10
RISE_TIME = 9.4211E-10 TARG= 1.4116E-08 TRI G= 1. 3173E-08
TLINE_DLY = 1.6718E-09 TARG= 1.5787E-08 TRI G= 1.4116E-08

Temperature Coefficients Demo

SPICE-type simulators do not always automatically compensate for
variations in temperature. The simulators make many assumptions
that are not valid for all technologies. Many of the critical model
parameters in HSPICE provide first-order and second-order
temperature coefficients, to ensure accurate simulations. You can
optimize these temperature coefficients in either of two ways.

» The first method uses the TEMP DC sweep variable.

All analysis sweeps allow two sweep variables. To optimize the
temperature coefficients, one of these must be the optimize
variable. Sweeping TEMP limits the component to a linear
element, such as a resistor, inductor, or capacitor.

* The second method uses multiple components at different
temperatures.

EXAMPLE:

The following example, the $installdir/demo/hspice/ciropt/
opttemp.sp demo file, simulates three circuits of a voltage source. It
also simulates a resistor at -25, 0, and +25 °C from nominal, using
the DTEMP parameter for element delta temperatures. The resistors
share a common model.

Running Demonstration Files: Temperature Coefficients Demo

13-16

You need three temperatures to solve a second-order equation. You
can extend this simulation template to a transient simulation of non-
linear components (such as bipolar transistors, diodes, and FETS).

This example uses some simulation shortcuts. In the internal output
templates for resistors, LV1 (resistor) is the conductance (reciprocal
resistance) at the desired temperature.

* You can run optimization in the resistance domain.

« To optimize more complex elements, use the current or voltage
domain, with measured sweep data.

The error function expects a sweep on at least two points, so the
data statement must include two duplicate points.

Input File, for Optimized Temperature Coefficients
*FI LE OPTTEMP. SP OPTI M ZE RESI STOR TC1 AND TC2

v-25 1 0 1v

vO 2 0 1v

v+25 3 0 1v

r-25 1 0 rnod dt enp=-25
ro 2 0 rnod dt enp=0
r+25 3 0 rnod dt enp=25

.nmodel rnod R res=1k tclr=tclr_opt tc2r=tc2r_opt

Optimization Section

. model optnod opt

.dc data=RES_TEMP opti m ze=opt1l

+ results=r@enpl, r@enp2, r@enp3
+ nodel =opt nod
.paramtclr_opt=opt1(.001,-.1,.1)
.paramtc2r_opt=opt1l(1lu,-1m 1m

.meas r@enpl err2 par(R nmeas _t1) par(’1.0/ Ivl(r-25)")
.meas r@enp2 err2 par(R nmeas t2) par(’1.0/ Ivi(r0))
.meas r@enp3 err2 par(R nmeas_t3) par(’'1.0 / Ivi(r+25) ')

Running Demonstration Files: Temperature Coefficients Demo
13-17

* * Qutput section *

. dc dat a=RES TEMP

.print 'r1 diff’=par(’1.0/1v1l(r-25)")

+ 'r2_diff’=par(’1.0/1v1(r0))

+ "r3_diff’ =par(’1.0/1v1i(r+25)")

.data RES TEMP R neas t1 R neas t2 R neas t3
950 1000 1010

950 1000 1010

. enddat a

.end

Simulating Electrical Measurements

In this example, HSPICE simulates electrical measurements, which
return device characteristics for data sheets. The demonstration file
for this example is $installdir/demo/hspice/ddl/t2n2222.sp. This
example automatically includes DDL models by reference, using
either the DDLPATH environment variable, or the .OPTION
SEARCH=path statement. It also combines an AC circuit and
measurement, with a transient circuit and measurement.

The AC circuit measures the maximum Hfe, which is the small-signal
common emitter gain. HSPICE uses the . MEASURE WHEN
statement to calculate the unity gain frequency, and the phase at the
specified frequency. In the Transient Measurements section of the
input file, a segmented transient statement speeds-up simulation,
and compresses the output graph. Measurements include:

« TURN ON from 90% of input rising, to 90% of output falling.
e OUTPUT FALL from 90% to 10% of output falling.
« TURN OFF from 10% of input falling, to 10% of output rising.
« OUTPUT RISE from 10% to 90% of output rising.

Running Demonstration Files: Simulating Electrical Measurements

13-18

Figure 13-12 T2N2222 Optimization

o mm a

—_—

tFILE ASICE . 5P TEST OF 19 9TA&E LUNPED HO3 HODEL
LS-0CT92 141 EB158
=) T B psica.TRo
A= - =B pAR[-TiVSIHE
- _H
= Co T “= BARL-L(YLUNHP
- L : 1E———
AT SR =
- = 3
T o e g
e E
e S =
T : Héf; =
s ';y - -
T % - 'é
KT =
i.E =
aH P S S L S T S I S T |
- 200.0F TIAL E00.0P BOL. OF
0. TINE (LIHJ B00. DF

T2N2222 Optimization Example Input File

* FILE: T2N2222. SP

** assume bet a=200 ft 250nmeg at i c=20ma and vce=20v for 2n2222
. OPTI ON nopage autostop search=" "’

*** ft measurenent

* the net command automatically reverses the sign of

* the power supply current, for the network cal cul ations
.NET I (vce) IBASE ROUT=50 RI N=50

VCE C 0 vce

IBASE 0 b AC=1 DC=i base

xgft ¢ b 0 t2n2222

.ac dec 10 1 1000neg

.graph s21(m h21(m

. measure ' phase @21=0db’ WHEN h21(db) =0

.measure " h21 max’ max h21(m

. measure ' phase @21=0deg’ FIND h21(p) WHEN h21(db)=0

. param i base=1e-4 vce=20 tauf=5.5e-10

Running Demonstration Files: Simulating Electrical Measurements
13-19

Transient Measurements

** vccf power supply for forward reverse step recovery tine
** vccr power supply for inverse reverse step recovery tine
** VPLUSF positive voltage for forward pul se generator
** VPLUSr positive voltage for reverse pul se generator
** Vm nusf positive voltage for forward pul se generat or
** Vm nusr positive voltage for reverse pul se generator
** rl oadf |oad resistor for forward
** rloadr | oad resistor for reverse

. param vccf =30v

. par am VPLUSF=9. 9v

. par am VM NUSF=- 0. 5v

. param r | oadf =200

. TRAN 1N 75N 25N 200N 1N 300N 25N 1200N

.measure '"turn-ontine "trig par(’v(inf)-0.9*vplusf’) val =0
+ rise=1 targ par (’ v(outf) 0.9*vccf’) val =0 fall=1

.measure 'fall time "trig par(’v(outf)-0.9*vccf’) val =
+ fall=1 targ par(’v(outf)-0.1*vccf’) val=0 fall=1
.measure 'turn-off time’ trig par(’v(inf)-0.1*vplusf’)
+ val =0 fall=1 targ par(’v(outf)-0.1*vccf’) val =0 rise=1
.nmeasure 'rise tinme 'trig par(’v(outf)-0.1*vccf’) val =0
+ rise=1 targ par(’v(outf)-0.9*vccf’) val =0 rise=1

.graph V(INF) V(OUTF)

VCCF VCCF 0 vecef

RLOADF VCCF QUTF RLOADF

Rl NF | NF VBASEF 1000

RPARF | NF 0 58

XSCOPf QUTF 0 SCOPE

VI NF | NF 0 PL VM NUSF 0S VM NUSF 5NS

+ VPLUSF 7NS VPLUSF 207NS VM NUSF 209NS
* CCXOF VBASEF QUTF CCXOF

* CEXOF VBASEF 0 CEXOF

XQF OUTF VBASEF O t2n2222

. MACRO SCCPE VLOAD VREF

RI'N VLOAD VREF 100K

CI'N VLOAD VREF 12P

. EOM

. END

Running Demonstration Files: Simulating Electrical Measurements
13-20

Modeling Wide-Channel MOS Transistors

If you select an appropriate model for I/O cell transistors, simulation
accuracy improves. For wide-channel devices, model the transistor
as a group of transistors, connected in parallel, with appropriate RC
delay networks. If you model the device as only one transistor, the
polysilicon gate introduces delay.

When you scale to higher-speed technologies, the area of the
polysilicon gate decreases, reducing the gate capacitance.
However, if you scale the gate oxide thickness, the capacitance per
unit area increases, which also increases the RC product.

EXAMPLE:

The following example illustrates how scaling affects the delay. For
example, for a device with:

e Channel width = 100 microns.
e Channel length = 5 microns.
« Gate oxide thickness = 800 Angstroms.

The resulting RC product for the polysilicon gate is:

W Esio [hsi
Rpoly = — [40 oy = ——[1L W
poly L poly tox
Rpoly = %0 M0 = 800, Co = % (100 [= 215fF RC =138 ps

For a transistor with:

e Channel width = 100 microns.

e Channel length = 1.2 microns.

« (Gate oxide thickness = 250 Angstroms.

Running Demonstration Files: Modeling Wide-Channel MOS Transistors
13-21

The resulting RC product for the polysilicon gate is:

channel width
channel length

Rpoly =

_ 3.9 [B.86
Tox

You can use a nine-stage ladder model, to model the RC delay in
CMOS devices.

Co [channel width [(thannel length RC =546 ps

Figure 13-13 Nine-stage Ladder Model

Dr_ain
M1 M2 M3 M4 M5 M6 M7 M8 M9
T| W/18 +|H‘ W/9 +|H‘ W/9 +|H‘ wWi9 [Wi9 +|H‘ W/9 +|H‘ W/9 +|H‘ W/9 +|H‘ WI9 %\'\/Av}fa
AN AN AN AN AN AN AN AN ’
Bu*k Source

In this example, the nine-stage ladder model is in a data file,
$installdir/demo/hspice/apps /asic3.sp. To optimize this model,
HSPICE uses measured data from a wide channel transistor, as the
target data\. Optimization produces a nine-stage ladder model,
which matches the timing characteristics of the physical data.
HSPICE compares the simulation results for the nine-stage ladder
model, and the one-stage model, using the nine-stage ladder model
as the reference. The one-stage model results are about 10% faster
than actual physical data indicates.

Running Demonstration Files: Modeling Wide-Channel MOS Transistors

13-22

EXAMPLE:

The following is an example of a Nine-Stage Ladder model:

* FILE: ASI C3. SP Test

.subckt Irgtp drain gate source bul k
mlL drain gate source bul k

n2 drain gl source bul k

nB8 drain g2 source bul k

md drain g3 source bul k

nb drain g4 source bul k

n6 drain g5 source bul k

n7 drain g6 source bul k

nB drain g7 source bul k

nmd drain g8 source bul k

MmO drain g9 source bul k
gate g1 "wt/Ilt*rpoly/

ri
r2
r3
r4
rs
re
r7
r8

gl g2 "w/lt*rpoly/9
g2 g3 'w/lt*rpoly/9
g3 g4 "w/lt*rpoly/9
g4 g5 "w/lt*rpoly/9
g5 g6 "wt/lt*rpoly/9
g6 g7 "wt/lt*rpoly/9
g7 g8 "wt/lt*rpoly/9
g8 g9 "wt/lt*rpoly/9

.ends lrgtp
.end pro
. end

of 9 Stage Ladder

I
~—+

I 1 s 1 e A
~ ~ ~ ~+ ~ ~ ~+ ~ —

—

Running Demonstration Files: Modeling Wide-Channel MOS Transistors

13-23

Figure 13-14 Asic3 Single vs. Lumped Model

=FILE ASICE 5P TEZT OF 14 9TA®E LUHPED HO3 HODEL
L5-0CT92 141 Bi15@
z . D opsica. TR
1o a4 - 'f__ﬁ_,-—f = PARI-LLYSIHE
- _&
o = SR Ll = PARL-LLYLUHP
- ' - ' O
& 00T R =
= -~ 3
P TOIRT - =
R = z
A & un = . f/] =
i - e =
H z z
5.00 = - - =
L - 3
I - =
L L -
a.un;— _';
e.un;— _;
= E
R [T TR IR T |
1.0W Yoo op Ga0.0F GO0 OF
. TIHE (LIH2 B0 OF

Demonstration Input Files
Table 13-4 Demonstration Input Files (Sheet 1 of 15)

File Name Description

Algebraic Output Variable Examples$installdir/demo/hspice/alge
alg.sp demonstrates algebraic parameters

alg_fil.sp magnitude response of the behavioral filter model
alg_vco.sp voltage-controlled oscillator

alg_vf.sp voltage-to-frequency converter, behavioral model
xalgl.sp QA of parameters

xalg2.sp QA of parameters

Running Demonstration Files: Demonstration Input Files
13-24

Table 13-4 Demonstration Input Files (Sheet 2 of 15)

File Name

Description

Applications of General Interest$installdir/demo/hspice/apps

alm124.sp AC, noise, and transient op-amp analysis
alter2.sp ALTER examples

ampg.sp pole/zero analysis of a G source amplifier
asicl.sp ground bounce, for /O CMOS driver

asic3.sp ten-stage lumped MOS model

bjt2bit.sp BJT two-bit adder

bjt4bit.sp four-bit, all NAND gate, binary adder

bjtdiff.sp BJT diff amp, with every analysis type
bjtschmt.sp bipolar Schmidt trigger

bjtsense.sp bipolar sense amplifier

celichar.sp characteristics of ASIC inverter cell

crystal.sp crystal oscillator circuit

gaasamp.sp simple GaAsFET amplifier

grouptim.sp group time-delay example

inv.sp sweep MOSFET -3 sigma to +3 sigma, use .MEASURE output
mcdiff.sp CMOS differential amplifier

mondc_a.sp Monte Carlo of MOS diffusion and photolithographic effects
mondc_b.sp Monte Carlo DC analysis

montl.sp Monte Carlo Gaussian, uniform, and limit function
mos2bit.sp two-bit MOS adder

pll.sp phase-locked loop

sclopass.sp switched-capacitor low-pass filter

worst.sp worst case skew models, using .ALTER
xbjt2bit.sp BJT NAND gate two-bit binary adder

Running Demonstration Files: Demonstration Input Files

13-25

Table 13-4 Demonstration Input Files (Sheet 3 of 15)

File Name

Description

Behavioral Appli

cations$installdir/demo/hspice/behave

acl.sp

acl gate

amp_mod.sp

amplitude modulator, with pulse waveform carrier

behave.sp AND/NAND gates, using G, E Elements

calg2.sp voltage variable capacitance

det_dff.sp double edge-triggered flip-flop

diff.sp differentiator circuit

diode.sp behavioral diode, using a PWL VCCS

dlatch.sp CMOS D-latch, using behaviorals

galgl.sp sampling a sine wave

idealop.sp ninth-order low-pass filter

integ.sp integrator circuit

invb_op.sp optimizes the CMOS macromodel inverter

ivx.sp characteristics of the PMOS and NMOS, as a switch
op_amp.sp op-amp, from Chua and Lin

pd.sp phase detector, modeled as switches

pdb.sp phase detector, using behavioral NAND gates
pwl10.sp operational amplifier, used as a voltage follower
pwl2.sp PPW-VCCS, with a gain of 1 amp/volt

pwl4.sp eight-input NAND gate

pwl7.sp modeling inverter, using a PWL VCVS

pwl8.sp smoothing the triangle waveform, using the PWL CCCS
ring5bm.sp five-stage ring oscillator — macromodel CMOS inverter
ringb.sp ring oscillator, using behavioral model

sampling.sp sampling a sine wave

Running Demonstration Files: Demonstration Input Files

13-26

Table 13-4 Demonstration Input Files (Sheet 4 of 15)

File Name Description

scr.sp silicon-controlled rectifier, modeled using the PWL CCVS
swcap5.sp fifth-order elliptic switched capacitor filter

switch.sp test for PWL switch element

swrc.sp switched capacitor RC circuit

triode.sp triode model family of curves, using behavioral elements
triodex.sp triode model family of curves, using behavioral elements
tunnel.sp modeling tunnel diode characteristic, using PWL VCCS
vcob.sp voltage-controlled oscillator, using PWL functions

Benchmarks$installdir/demo/hspice/bench

bigmos1.sp large MOS simulation

demo.sp quick demo file, to test installation

m2bit.sp 72-transistor two-bit adder — typical cell simulation

m2bitf.sp fast simulation example

m2bitsw.sp Fast simulation example. Same as m2bitf.sp, but uses behavioral elements

senseamp.sp

bipolar analog test case

Timing Analysis$installdir/demo/hspice/bisect

fig3a.sp DFF bisection search, for setup time
fig3b.sp DFF early, optimum, and late setup times
inv_a.sp inverter bisection (pass-fail)

BJT and Diode Devices$installdir/demo/hspice/bjt

bjtbeta.sp plot BJT beta

bjtft.sp plot BJT FT, using s-parameters
bjtgm.sp plot BJT Gm, Gpi

dpntun.sp junction tunnel diode
snaphsp.sp convert SNAP to HSPICE
tun.sp tunnel oxide diode

Running Demonstration Files: Demonstration Input Files

13-27

Table 13-4 Demonstration Input Files (Sheet 5 of 15)

File Name

Description

Cell Characterization$installdir/demo/hspice/cchar

dff.sp DFF bisection search, for setup time
inv3.sp characteristics of an inverter
inva.sp characteristics of an inverter
invb.sp characteristics of an inverter
loadl.sp inverter sweep, delay versus fanout

setupbsc.sp

setup characteristics

setupold.sp

setup characteristics

setuppas.sp

setup characteristics

sigma.sp sweep MOSFET -3 sigma to +3 sigma, using measure output
tdgtl.a2d Viewsim A2D HSPICE input file

tdgtl.d2a Viewsim D2A HSPICE input file

tdgtl.sp two-bit adder, using D2A Elements

Circuit Optimization$installdir/demo/hspice/ciropt

ampgain.sp set unity gain frequency of a BJT diff pair

ampopt.sp optimize area, power, speed of a MOS amp

asic2.sp optimize speed, power of a CMOS output buffer

asic6.sp find best width of a CMOS input buffer

delayopt.sp optimize group delay of an LCR circuit

Ipopt.sp match lossy filter to ideal filter

opttemp.sp find first and second temperature coefficients of a resistor
rcopt.sp optimize speed or power, for an RC circuit

DDLS$installdir/demo/hspice/ddI

ad8bit.sp

eight-bit A/D flash converter

alf155.sp

characteristics of National JFET op-amp

Running Demonstration Files: Demonstration Input Files

13-28

Table 13-4 Demonstration Input Files (Sheet 6 of 15)

File Name Description

alf156.sp characteristics of National JFET op-amp

alf157.sp characteristics of National JFET op-amp

alf255.sp characteristics of National JFET op-amp

alf347.sp characteristics of National JFET op-amp

alf351.sp characteristics of National wide-bandwidth, JFET input, op-amp
alf353.sp characteristics of National wide-bandwidth, dual JFET input, op-amp
alf355.sp characteristics of Motorola JFET, op-amp

alf356.sp characteristics of Motorola JFET, op-amp

alf357.sp characteristics of Motorola JFET, op-amp
alf3741.sp

alml0la.sp

alm107.sp characteristics of National op-amp

alm108.sp characteristics of National op-amp

alm108a.sp characteristics of National op-amp

alm118.sp characteristics of National op-amp

alm124.sp characteristics of National low-power, quad op-amp
alml24a.sp characteristics of National low-power, quad op-amp
alm158.sp characteristics of National op-amp

alm158a.sp characteristics of National op-amp

alm201.sp characteristics of LM201 op-amp

alm201a.sp characteristics of LM201 op-amp

alm207.sp characteristics of National op-amp

alm208.sp characteristics of National op-amp

alm208a.sp characteristics of National op-amp

alm224.sp characteristics of National op-amp

Running Demonstration Files: Demonstration Input Files
13-29

Table 13-4

Demonstration Input Files (Sheet 7 of 15)

File Name Description

alm258.sp characteristics of National op-amp

alm258a.sp characteristics of National op-amp

alm301a.sp characteristics of National op-amp

alm307.sp characteristics of National op-amp

alm308.sp characteristics of National op-amp

alm308a.sp characteristics of National op-amp

alm318.sp characteristics of National op-amp

alm324.sp characteristics of National op-amp

alm358.sp characteristics of National op-amp

alm358a.sp characteristics of National op-amp

alm725.sp characteristics of National op-amp

alm741.sp characteristics of National op-amp

alm747.sp characteristics of National op-amp

alm747c.sp characteristics of National op-amp

alm1458.sp characteristics of National dual op-amp

alm1558.sp characteristics of National dual op-amp

alm2902.sp characteristics of National op-amp

alm2904.sp characteristics of National op-amp

amcl1458.sp characteristics of Motorola internally-compensated, high-performance op-amp
amcl1536.sp characteristics of Motorola internally-compensated, high-voltage op-amp
amcl741.sp characteristics of Motorola internally-compensated, high-performance op-amp
amcl747.sp characteristics of Motorola internally-compensated, high-performance op-amp
aneb5534.sp characteristics of Tl low-noise, high-speed op-amp

anjm4558.sp

characteristics of Tl dual op-amp

anjm4559.sp

characteristics of Tl dual op-amp

Running Demonstration Files: Demonstration Input Files

13-30

Table 13-4

Demonstration Input Files (Sheet 8 of 15)

File Name

Description

anjm4560.sp

characteristics of Tl dual op-amp

aop04.sp characteristics of PMI op-amp

aop07.sp characteristics of PMI ultra-low offset voltage, op-amp
aopl4.sp characteristics of PMI op-amp

aopl5b.sp characteristics of PMI precision JFET input, op-amp
aopl6b.sp characteristics of PMI precision JFET input, op-amp

at094cns.sp

characteristics of Tl op-amp

atlo71c.sp characteristics of Tl low-noise, op-amp
atlo72c.sp characteristics of Tl low-noise, op-amp
atlo74c.sp characteristics of Tl low-noise, op-amp
atlo81c.sp characteristics of TI JFET op-amp
atlo82c.sp characteristics of TI JFET op-amp
atlo84c.sp characteristics of TI JFET op-amp
atl092cp.sp characteristics of Tl op-amp

atl094cn.sp characteristics of Tl op-amp

aupc358.sp characteristics of NEC general, dual op-amp

aupcl251.sp

characteristics of NEC general, dual op-amp

j2n3330.sp characteristics of JFET 2n3330 I-V
mirf340.sp characteristics of IRF340 I-V
t2n2222.sp characteristics of BJT 2n2222

Device Optimization$installdir/demo/hspice/devopt

beta.sp LEVEL=2 beta optimization

bjtopt.sp s-parameter optimization of a 2n6604 BJT
bjtoptl.sp 2n2222 DC optimization

bjtopt2.sp 2n2222 Hfe optimization

Running Demonstration Files: Demonstration Input Files

13-31

Table 13-4 Demonstration Input Files (Sheet 9 of 15)

File Name Description

d.sp diode, multiple temperatures

dcoptl.sp 1n3019 diode, I-V and C-V optimization

gaas.sp JFET optimization

jopt.sp 300u/1u GaAs FET, DC optimization

jopt2.sp JFET optimization

joptac.sp 300u/1u GaAs FET, 40 MHz-20 GHz, s-parameter optimization
13.sp MOS LEVEL 3 optimization

I13a.sp MOS LEVEL 3 optimization

128.sp LEVEL=28 optimization

ml2opt.sp MOS LEVEL=2 I-V optimization

ml3opt.sp MOS LEVEL=3 I-V optimization

ml6opt.sp MOS LEVEL=6 I-V optimization

ml13opt.sp MOS LEVEL=13 I-V optimization

opt_bjt.sp 2n3947 forward and reverse Gummel optimization

Fourier Analysis$installdir/demo/hspice/fft

am.sp FFT analysis, AM source

bart.sp FFT analysis, Bartlett window

black.sp FFT analysis, Blackman window

dist.sp FFT analysis, second harmonic distortion
examl.sp FFT analysis, AM source

exam3.sp FFT analysis, high-frequency signal detection test
exam4.sp FFT analysis, small-signal harmonic distortion test
exp.sp FFT analysis, exponential source

fft.sp FFT analysis, transient, sweeping a resistor
fftl.sp FFT analysis, transient

Running Demonstration Files: Demonstration Input Files
13-32

Table 13-4 Demonstration Input Files (Sheet 10 of 15)

File Name Description

fft2.sp FFT analysis, on the product of three waveforms
fft3.sp FFT analysis, transient, sweeping frequency
fftd.sp FFT analysis, transient, Monte Carlo Gaussian distribution
fft5.sp FFT analysis, data-driven transient analysis
fft6.sp FFT analysis, sinusoidal source

gauss.sp FFT analysis, Gaussian window

hamm.sp FFT analysis, Hamming window

hann.sp FFT analysis, Hanning window

harris.sp FFT analysis, Blackman-Harris window
intermod.sp FFT analysis, intermodulation distortion
kaiser.sp FFT analysis, Kaiser window

mod.sp FFT analysis, modulated pulse

pulse.sp FFT analysis, pulse source

pwl.sp FFT analysis, piecewise linear source

rect.sp FFT analysis, rectangular window

rectan.sp FFT analysis, rectangular window

sffm.sp FFT analysis, single-frequency FM source
sine.sp FFT analysis, sinusoidal source

swcapb.sp FFT analysis, fifth-order elliptic, switched-capacitor filter
tri.sp FFT analysis, rectangular window

win.sp FFT analysis, window test

window.sp FFT analysis, window test

winreal.sp FFT analysis, window test

Running Demonstration Files: Demonstration Input Files

13-33

Table 13-4 Demonstration Input Files (Sheet 11 of 15)

File Name

Description

Filters$installdir/

demo/hspiceffilters

fop_1.sp bandpass LCR filter, measurement

fbp_2.sp bandpass LCR filter, pole/zero

fopnet.sp bandpass LCR filter, s-parameters

fbpric.sp LCR AC analysis, for resonance

fhp4th.sp high-pass LCR, fourth-order Butterworth filter
fkerwin.sp pole/zero analysis of Kerwin’s circuit

flp5th.sp low-pass, fifth-order filter

flp9th.sp low-pass, ninth-order FNDR, with ideal op-amps
microl.sp test of microstrip

micro2.sp test of microstrip

tcoax.sp test of RG58/AU coax

translm.sp FR-4, printed-circuit, lumped transmission line

Magnetics$insta

lidir/demo/hspice/mag

aircore.sp air-core transformer circuit

bhloop.sp b-h loop, non-linear, magnetic-core transformer

mag2.sp three primary, two secondary, magnetic-core transformer
magcore.sp magnetic-core transformer circuit

royerosc.sp

Royer magnetic-core oscillator

MOSFET Devices$installdir/demo/hspice/mos

bsim3.sp LEVEL=47 BSIM3 model

capl3.sp plot MOS capacitances, LEVEL=13 model
cap_bh.sp capacitances for LEVEL=13 model
cap_m.sp capacitance for LEVEL=13 model
capopO0.sp plot MOS capacitances, LEVEL=2

Running Demonstration Files: Demonstration Input Files

13-34

Table 13-4 Demonstration Input Files (Sheet 12 of 15)
File Name Description

capopl.sp plot MOS capacitances, LEVEL=2

capop2.sp plot MOS capacitances, LEVEL=2

capop4.sp plot MOS capacitances, LEVEL=6
chrgpump.sp charge-conservation test, LEVEL=3

iiplot.sp plot of impact ionization current

mi6fex.sp plot temperature effects, LEVEL=6
mll13fex.sp plot temperature effects, LEVEL=13
mi13ft.sp s-parameters, for LEVEL=13

ml13iv.sp plot I-V, for LEVEL=13

mi27iv.sp plot |-V, for LEVEL=27 SOSFET

mosiv.sp plot I-V, for files that you include

MOosivev.sp plot I-V and C-V, for LEVEL=3

gpulse.sp charge-conservation test, LEVEL=6
gswitch.sp charge-conservation test, LEVEL=6
selector.sp automatic model selector for width and length
tgam2.sp LEVEL=6, gamma model

tmos34.sp MOS LEVEL=34 EPFL, test DC

Radiation Effects$installdir/demo/hspice/rad

bradl.sp example of bipolar radiation effects
brad2.sp example of bipolar radiation effects
brad3.sp example of bipolar radiation effects
brad4.sp example of bipolar radiation effects
brad5.sp example of bipolar radiation effects
brad6.sp example of bipolar radiation effects
dradl.sp example of diode radiation effects

Running Demonstration Files: Demonstration Input Files

13-35

Table 13-4 Demonstration Input Files (Sheet 13 of 15)

File Name Description

drad2.sp example of diode radiation effects
drad4.sp example of diode radiation effects
drad5.sp example of diode radiation effects
drad6.sp example of diode radiation effects
dradarb2.sp example of diode radiation effects
jexl.sp example of JFET radiation effects
jex2.sp example of JFET radiation effects
jpradl.sp example of JFET radiation effects
jprad2.sp example of JFET radiation effects
jprad4.sp example of JFET radiation effects
jradl.sp example of JFET radiation effects
jrad2.sp example of JFET radiation effects
jrad3.sp example of JFET radiation effects
jrad4.sp example of JFET radiation effects
jrad5.sp example of JFET radiation effects
jrad6.sp example of JFET radiation effects
mradl.sp example of MOSFET radiation effects
mrad2.sp example of MOSFET radiation effects
mrad3.sp example of MOSFET radiation effects
mrad3p.sp example of MOSFET radiation effects
mrad3px.sp example of MOSFET radiation effects
radl.sp example of total MOSFET dose
rad2.sp diode photo-current test circuit
rad3.sp diode photo-current test circuit, RLEV=3
rad4.sp diode photo-current test circuit

Running Demonstration Files: Demonstration Input Files
13-36

Table 13-4 Demonstration Input Files (Sheet 14 of 15)

File Name Description

rad5.sp BJT photo-current test circuit, with an NPN transistor
rad6.sp BJT secondary photo-current effect, which varies with R1
rad7.sp BJT RLEV=6 example (semi-empirical model)

rad8.sp JFET RLEV=1 example, with Wirth-Rogers square pulse
rad9.sp JFET stepwise-increasing radiation source

rad10.sp GaAs RLEV=5 example (semi-empirical model)

radll.sp NMOS E-model, LEVEL=8, with Wirth-Rogers square pulse
radl12.sp NMOS 0.5x resistive voltage-divider

rad13.sp three-input NMOS NAND gate, with non-EPI, EPI, and SOS examples
radl4.sp GaAs differential-amplifier circuit

radl4dc.sp n-channel JFET, DC I-V curves

Sources$installd

irldemo/hspice/sources

amsrc.sp amplitude modulation

exp.sp exponential independent source

pulse.sp test of pulse

pwl.sp repeated piecewise-linear source

pwl10.sp op-amp, voltage follower

rtest.sp voltage-controlled resistor, inverter chain
sffm.sp single-frequency, FM modulation source
sin.sp sinusoidal source, waveform

verl.sp switched-capacitor network, using G-switch

Transmission Lines$installdir/demo/hspice/tline

frd.sp microstrip test, FR-4 PC board material
fr4o.sp optimizing model, for microstrip FR-4 PC board material
frdx.sp FR4 microstrip test

Running Demonstration Files: Demonstration Input Files

13-37

Table 13-4 Demonstration Input Files (Sheet 15 of 15)

File Name

Description

hd.sp

ground bounce, for /O CMOS driver

rcsnubts.sp

ground bounce, for I/O CMOS driver, at snubber output

rcsnubtt.sp

ground bounce, for /O CMOS driver

stripl.sp two microstrips, in series (8 mil and 16 mil wide)

strip2.sp two microstrips, coupled together

tl4p.sp 1400 mil by 140 mil, 50-ohm tline, on FR-4, 50 MHz to 10.05 GHz
t14xx.sp 1400 mil by 140 mil, 50-ohm tline, on FR-4 optimization
t1400.sp 1400 mil by 140 mil, 50-ohm tline, on FR-4 optimization
tcoax.sp RG58/AU coax, with 50-ohm termination

tfrd.sp microstrip test

tfrdo.sp microstrip test

tl.sp series source, coupled and shunt-terminated transmission lines
transmis.sp algebraics, and lumped transmission lines

twin2.sp twin-lead model

xfrd.sp microstrip test sub-circuit, expanded

xfrda.sp microstrip test sub-circuit, expanded, larger ground-resistance
xfrdb.sp microstrip test

xulump.sp test 5-, 20-, and 100-lump, U models

Running Demonstration Files: Demonstration Input Files

13-38

Full Simulation Examples

» The examples in this chapter show the basic text and post-
processor output, for a sample input netlist. The first example
uses AvanWaves to view results.

 The second example uses Cosmos-Scope.

This chapter includes the following sections:

e Simulation Example Using AvanWaves

« Simulation Example Using Cosmos-Scope

A-1

Simulation Example Using AvanWaves

Input Netlist and Circuit

The following example is an input netlist for a linear CMOS amplifier.
Comment lines indicate the individual sections of the netlist. Refer to
Simulation Input and Controls on page 3-1, for information about the
individual commands.

* Exanple HSPICE netlist, using a linear CMOS anplifier
* netlist options

.option post probe brief nonod

* defined paraneters

. param anal og_vol tage=1.0

* gl obal definitions

. gl obal vdd

* source statenents
Vinput in gnd SIN (0.0v anal og _voltage 10x)
Vsupply vdd gnd DC=5. Ov

* circuit statenents
Rintermin gnd 51

Cincap in infilt 0.001

Rdanmp infilt clanmp 100

D ow gnd cl anp di ode_nod
Dhi gh cl anp vdd di ode_nod
Xinvl clanp invlout inverter
Rpul I clanp invlout 1x

Xinv2 invlout inv2out inverter
Routterm inv2out gnd 100x

* subcircuit definitions

. subckt inverter in out

Monos out in vdd vdd pnos_nod | =1u w=6u
vhnos out in gnd gnd nnos_nod | =1u w=2u
. ends

* nmodel definitions

. nmodel pnos_nod pnos | evel =3

. model nnobs_nod nnos | evel =3

Full Simulation Examples: Simulation Example Using AvanWaves
A-2

. nodel diode_nod d
* anal ysis specifications

. TRAN 10n 1u sweep analog voltage Iin 5 1.0 5.0

* out put specifications

. probe TRAN v(in) v(clanp) v(invlout) v(inv2out) i (dl ow)
.measure TRAN falltinme TRI G v(inv2out) VAL=4.5v FALL=1
+ TARG V(i nv2out) VAL=0.5v FALL=1

.end

Figure A-1 is a circuit diagram, for the linear CMOS amplifier in the
circuit portion of the netlist. The two sources in the diagram are also

in the netlist.

Note: The inverter symbols in the circuit diagram are constructed
from two complementary MOSFET elements. Also, the diode
and MOSFET models in the netlist do not have non-default
parameter values, except to specify Level 3 MOSFET models

(empirical model).

Figure A-1 Circuit Diagram for Linear CMOS Inverter

Analog +5V
Source

10 MOhm

10 MHz
1V to 5V 0.001 F

=8 100 Ohm
51 Ohm

Output
Node

100 MOhm

Execution and Output Files

The following section displays the output files, from a HSPICE
simulation of the amplifier, shown in the previous section. To execute

the simulation, enter:

hspi ce exanple.sp > exanple.lis

Full Simulation Examples: Simulation Example Using AvanWaves

A-3

In this syntax, the input netlist name is example.sp, and the output
listing file name is example.lis. Simulation creates the following
output files:

Table A-1 HSPICE Output Files

File Name Description

example.ic Initial conditions for the circuit.

example.lis Text simulation output listing.

example.mtO Post-processor output, for MEASURE statements.
example.pa0 Subcircuit path table.

example.stO Run-time statistics.

example.trO Post-processor output, for transient analysis.

The following subsections show text files to simulate the ampilifier,
using HSPICE on a Sun workstation. The example does not show
the two post-processor output files, which are in binary format.

Example.ic

* “simulator” “HSPICE

* “version” “98.4 (981215) ”

* “format” “HSP”

* “rundate” “13:58:43 01/08/1999”
* “netlist” “exanple.sp ”

* “runtitle” “* exanple hspice netlist using a |inear
* cnos anplifier ”

*time = 0.

* tenperature = 25. 0000

*

** BEGA N. Saved Operating Point ***
.option gm ndc= 1. 0000p

. hodeset

+ clanmp = 2.6200
+in = 0.

+infilt = 2.6200
+ invlout = 2.6200
+ inv2out = 2.6199
+ vdd = 5. 0000

*

** END: Saved Operating Point ***

Full Simulation Examples: Simulation Example Using AvanWaves
A-4

Example.lis
Usi ng: /net/sl eepy/l0/group/ hspice/ 98. 4bet a/ sol 4/ hspi ce

*xxx%kx HSPICE -- 98.4 (981215) 13:58:43 01/08/1999 solaris
Copyright (C 1985-2002 by Synopsys Corporation.
Unpubl i shed-rights reserved under US copyright |aws.

This programis protected by law and is subject to the
ternms and conditions of the |icense agreenent found in:

[af s/ rtp.synopsys. com product/ hspice/ current/
i cense. t xt

Use of this programis your acceptance to be bound by this
| i cense agreenent. HSPICE is a trademark of Synopsys, Inc.

| nput Fil e: exanple.sp

lic:
lic: FLEXI mv5.12 USER hspi ceuser HOSTNANME: hspi ceserv
+ HOSTI D: 8086420f PI D: 1459

lic: Using FLEXIm1license file:

lic: /afs/rtp/product/distrib/bin/license/license. dat

lic: Checkout hspice; Encryption code: AC34CE559E01F6E05809
lic: License/Maintenance for hspice will expire on 14-apr-
+ 1999/ 1999. 200

lic: 1(in_use)/ 10 FLOATING license(s) on SERVER hspi ceserv
i

* exanple hspice netlist using a linear cnos anplifier

*kkk*k*

* netlist options
.option post probe brief nonod

* defined paraneters
Openi ng plot unit= 15
file=./exanple.pal

*xxxx*x HSP| CE - - 98.4 (981215) 13:58:43
*xxx%x% 01/08/ 1999 solaris ******

* exanpl e hspice netlist using a linear cnos anplifier
x transient analysis tnome 25.000 tenp= 25.000 ****x*

Full Simulation Examples: Simulation Example Using AvanWaves
A-5

*** paraneter anal og vol tage = 1. 000E+00 ***

node =vol t age node =vol t age node =vol t age
+0:clanp = 2.6200 0:in = 0. O:infilt = 2.6200
+0: i nvlout =2.6200 0:inv2out = 2.6199 0: vdd = 5.0000

Openi ng plot unit= 15
file=./exanple.trO

war ni ng negati ve-nos conductance = 1. !mnbs iter= 2
vds, vgs, vbs = 2.45 2.93 0.
gm gds, gnbs, i ds= - 3. 636E- 05 1. 744E-04 0. 1.598E-04

*kkk*k*%x

* exanple hspice netlist using a linear cnos anplifier
x** transient analysis tnonr 25. 000 tenp= 25.000 **

falltime= 3.9149E-08 targ= 7. 1916E-08 trig= 3.2767E-08

*** HSPICE -- 98.4 (981215) 13:58:43

*** (01/08/1999 solaris ***

* exanpl e hspice netlist using a linear cnos anplifier
xx%x transient anal ysis tnonme 25. 000 tenp= 25. 000 ****

*** paraneter anal og vol tage = 2. 000E+00Q ***

node =vol t age node =vol t age node =vol t age
+0:clanp = 2.6200 O:in = 0. O:infilt = 2.6200
+0: i nvlout = 2.6200 O:inv2out = 2.6199 0:vdd = 5.0000

*kkk*k*%x

* exanple hspice netlist using a linear cnos anplifier
x** transient analysis tnonr 25.000 tenp= 25.000 **

falltime= 1.5645E-08 targ= 5. 7994E- 08 trig= 4.2348E-08

**x*% HSP| CE - - 98.4 (981215) 13:58:43
%* (01/08/ 1999 solaris *

* exanpl e hspice netlist using a linear cnos anplifier
x** transient analysis tnonr 25.000 tenp= 25.000 **

*** paraneter anal og vol tage = 3. 000E+00 ***

node =vol t age node =vol t age node =vol t age
+0:clanmp = 2.6200 0:in = 0. O:infilt = 2.6200
+0: i nvlout = 2.6200 O:inv2out = 2.6199 0:vdd = 5.0000

Full Simulation Examples: Simulation Example Using AvanWaves
A-6

kkkk

* exanpl e hspice netlist using a linear cnos anplifier
***** transient analysis tnon= 25.000 tenp= 25.000 *****

falltime= 1.1917E-08 targ= 5. 6075E-08 trig= 4.4158E-08

*¥rxxkx HSPICE -- 98.4 (981215) 13:58:43
krRxkxk 01/08/ 1999 solaris *x*x*x
* exanpl e hspice netlist using a linear cnos anplifier

x transient analysis tnon= 25.000 tenp= 25.000 *****

*** paraneter anal og _vol tage = 4. 000E+0Q ***

node =vol t age node =vol t age node =vol t age
+0:clanmp = 2.6200 0:in = 0. O:infilt = 2.6200
+0:invlout = 2.6200 O:inv2out = 2.6199 0:vdd = 5.0000
*k*k k)%

* exanpl e hspice netlist using a linear cnos anplifier
x** transient analysis tnonm= 25.000 tenp= 25.000 **

falltime= 7.5424E-09 targ= 5. 3989E- 08 trig= 4. 6447E-08

*xxxkx HSPICE -- 98.4 (981215) 13:58:43
*xxx%x% 01/08/ 1999 solaris ******

* exanple hspice netlist using a linear cnos anplifier
***** transient analysis tnon= 25.000 tenp= 25.000 *****

*** paraneter anal og_vol tage = 5. 000E+00 ***

node =vol t age node =vol t age node =vol t age
+0:clanmp = 2.6200 0:in = 0. O:infilt = 2.6200
+0:invlout = 2.6200 O:inv2out = 2.6199 0:vdd = 5.0000
*k*k k)%

* exanpl e hspice netlist using a linear cnos anplifier
***** transient analysis tnon= 25.000 tenp= 25.000 *****

falltime= 6.1706E-09 targ= 5. 3242E-08 trig= 4.7072E-08

neas_variable = falltine

mean = 16. 0848n varian = 1.802e-16
sigma = 13.4237n avgdev = 9. 2256n
max = 39.1488n m n = 6.1706n

***%** job concl uded

Full Simulation Examples: Simulation Example Using AvanWaves
A-7

*xx%xx HSP| CE -- 98.4 (981215) 13:58:43

*¥rxkxkxk (01/08/ 1999 solaris ***x**

* exanpl e hspice netlist using a linear cnos anplifier
*** job statistics sunmary tnom= 25.000 tenp= 25.000 ***

total nenory used 155 kbytes

nodes = 8 # el enents= 14

diodes= 2 # bjts = O # jfets = 0 # nosfets = 4
anal ysi s tinme # points tot. iter conv.iter

op poi nt 0. 04 1 23

transi ent 4.71 505 9322 2624 rev= 664
readi n 0. 03

errchk 0.01

set up 0.01

out put 0.01

total cpu tine 4. 84 seconds

job started at 13:58:43 01/08/ 1999
j ob ended at 13:58:50 01/08/ 1999

lic: Release hspice token(s)
HSPI CE j ob exanpl e. sp conpl et ed.
Fri Jan 8 13:58:50 EST 1999

Example.pa0l

1 xinvl.
2 Xinv2.

Example.stO

*¥x*xx%k HSP| CE - - 98.4 (981215) 13:58:43

*¥x%kx%k 01/ 08/ 1999 solaris

I nput File: exanple.sp

lic: FLEXI mv5.12 USER: hspi ceuser HOSTNAME: hspi ceserv

+ HOSTI D: 8086420f PI D: 1459

lic: Using FLEXIm1license file:

lic: /afs/rtp/product/distrib/bin/license/license. dat

lic: Checkout hspice; Encryption code: AC34CE559E01F6E05809
lic: License/ Maintenance for hspice will expire on

+ 14-apr-1999/1999. 200

lic: 1(in_use)/ 10 FLOATING license(s) on SERVER hspi ceserv
lic:

Full Simulation Examples: Simulation Example Using AvanWaves
A-8

init:

begin read circuit files,

cpu cl ock= 2. 21E+00

opti on probe
opti on nonod

init:

end read circuit files,

cpu cl ock= 2. 23E+00

+ nmenory= 145 kb

init:
init:
init:

begi n check errors,
end check errors,
begin setup matri X,

cpu cl ock= 2. 23E+00
cpu cl ock= 2. 24E+00 nenory= 144 kb
pi vot = 10 cpu cl ock= 2. 24E+00

establish matri x -- done, cpu cl ock= 2. 24E+00 nenory= 146 kb

re-order matrix -- done,
end setup matrix,
sweep: paraneter
anal og_vol tage =

init:

par anet er:

dcop: begi n dcop,
end dcop,
tot iter= 11

dcop:

cpu cl ock= 2. 24E+00 nenory= 146 kb
cpu cl ock= 2. 25E+00 nenory= 154 kb
paraneterl begi n, #sweeps= 5

1. 00E+00

cpu cl ock= 2. 25E+00

cpu clock= 2.27E+00 menory= 154 kb

output: ./exanple.ntO

sweep: tran tranl begin, stop t= 1.00E-06 #sweeps= 101
cpu clock= 2.28E+00

tran: tine= 1.03750E-07 tot iter= 78 conv_iter= 24
tran: tine= 2.03750E-07 tot iter= 179 conv_iter= 53
tran: tine= 3.03750E-07 tot iter= 280 conv_iter= 82
tran: tinme= 4.03750E-07 tot iter= 381 conv_iter= 111
tran: tinme= 5.03750E-07 tot iter= 482 conv_iter= 140
tran: tinme= 6.03750E-07 tot _iter= 583 conv_iter= 169
tran: tine= 7.03750E-07 tot iter= 684 conv_iter= 198
tran: tine= 8.03750E-07 tot iter= 785 conv_iter= 227
tran: tine= 9.03750E-07 tot iter= 886 conv_iter= 256
tran: tinme= 1. 00000E-06 tot iter= 987 conv_iter= 285
sweep: tran tranl end, cpu clock= 2. 82E+00 nenory= 155 kb
paraneter: anal og_voltage = 2. 00E+00

dcop: begin dcop, cpu clock= 2.83E+00

dcop: end dcop, cpu clock= 2. 83E+00 nenory= 155 kb

+ tot iter= 14

output: ./exanple.ntO

sweep: tran tran2 begin, stop t= 1.00E-06 #sweeps= 101
+ cpu cl ock= 2. 83E+00

tran: tine= 1.01016E-07 tot iter= 186 conv_iter= 54
tran: tine= 2.02642E-07 tot iter= 338 conv_iter= 98
tran: tine= 3.01763E-07 tot iter= 495 conv_iter= 145
tran: tinme= 4.04254E-07 tot _iter= 668 conv_iter= 198
tran: tinme= 5.02594E-07 tot _iter= 841 conv_iter= 248
tran: tinme= 6.10102E-07 tot _iter= 983 conv_iter= 289

Full Simulation Examples: Simulation Example Using AvanWaves

A-9

Full Simulation Examples: Simulation Example Using AvanWaves

A-10

tran: tinme= 7.01850E-07 tot iter= 1161 conv_iter= 340
tran: tine= 8.01776E-07 tot iter= 1306 conv_iter= 383
tran: tine= 9.04268E-07 tot iter= 1481 conv_iter= 436
tran: tine= 1. 00000E-06 tot iter= 1654 conv_iter= 486
sweep: tran tran2 end, cpu clock= 3. 71E+00 nenory= 155 kb
paraneter: anal og_voltage = 3. 00E+00

dcop: begin dcop, cpu clock= 3.71E+00

dcop: end dcop, cpu clock= 3. 72E+00 nenory= 155 kb

+ tot iter= 17

output: ./exanple.ntO

sweep: tran tran3 begin, stop t= 1.00E-06 #sweeps= 101
+ cpu cl ock= 3. 72E+00

tran: tinme= 1.00313E-07 tot _iter= 143 conv_iter= 42
tran: tine= 2.01211E-07 tot iter= 340 conv_iter= 100
tran: tine= 3.01801E-07 tot iter= 539 conv_iter= 156
tran: tinme= 4.02192E-07 tot iter= 729 conv_iter= 211
tran: tinme= 5.01997E-07 tot iter= 917 conv_iter= 265
tran: tinme= 6.01801E-07 tot iter= 1088 conv_iter= 314
tran: tinme= 7.01801E-07 tot iter= 1221 conv_iter= 351
tran: tine= 8.01801E-07 tot iter= 1362 conv_iter= 392
tran: tine= 9.02387E-07 tot iter= 1515 conv_iter= 435
tran: tine= 1. 00000E-06 tot iter= 1674 conv_iter= 479
sweep: tran tran3 end, cpu clock= 4.57E+00 nenory= 155 kb
paraneter: anal og_voltage = 4. 00E+00

dcop: begin dcop, cpu clock= 4.57E+00

output: ./exanple.ntO

sweep: tran tran4 begin, stop_t= 1.00E-06 #sweeps= 101
+ cpu cl ock= 4. 58E+00

tran: tinme= 1.00110E-07 tot iter= 236 conv_iter= 70
tran: tinme= 2.04376E-07 tot _iter= 475 conv_iter= 139
tran: tinme= 3.07892E-07 tot _iter= 767 conv_iter= 221
tran: tinme= 4.01056E-07 tot iter= 951 conv_iter= 273
tran: tinme= 5.01086E-07 tot iter= 1250 conv_iter= 353
tran: tine= 6.00965E-07 tot iter= 1541 conv_iter= 432
tran: tinme= 7.03668E-07 tot iter= 1805 conv_iter= 506
tran: tinme= 8.01114E-07 tot iter= 2046 conv_iter= 571
tran: tinme= 9.01005E-07 tot _iter= 2308 conv_iter= 640
tran: tine= 1. 00000E-06 tot iter= 2528 conv_iter= 703

sweep: tran tran4 end, cpu clock= 5.83E+00 nenory= 155 kb
par anet er: anal og_vol tage = 5. 00E+00
dcop: begin dcop, cpu clock= 5.83E+00

dcop: end dcop, cpu clock= 5.84E+00 nenory= 155 kb
+ tot _iter= 23
output: ./exanple.ntO

sweep: tran tran5 begin, stop t= 1.00E-06 #sweeps= 101
+ cpu cl ock= 5. 84E+00

tran: tine= 1.00195E-07 tot iter= 176 conv_iter= 47
tran: tine= 2.00617E-07 tot iter= 431 conv_iter= 115
tran: tinme= 3.00475E-07 tot _iter= 661 conv_iter= 176
tran: tinme= 4.00719E-07 tot _iter= 914 conv_iter= 246
tran: tinme= 5.04084E-07 tot iter= 1157 conv_iter= 311
tran: tine= 6.00666E-07 tot iter= 1347 conv_iter= 363
tran: tine= 7.01830E-07 tot iter= 1623 conv_iter= 435
tran: tine= 8.02418E-07 tot iter= 1900 conv_iter= 514
tran: tinme= 9.01178E-07 tot _iter= 2161 conv_iter= 585
tran: tinme= 1. 00000E-06 tot iter= 2410 conv_iter= 650

RPOO~NOUITRWNE

sweep: tran tran5 end, cpu clock= 7. 03E+00 nenory= 155 kb
sweep: paraneter par anet er 1 end

>i nf o: ***** hgpi ce job concl uded

lic: Release hspice token(s)

Simulation Graphical Output in AvanWaves

The plots on the following pages show the six different post-
processor outputs from the simulation of the example netlist. The
format of these plots is for AvanWaves, the Synopsys graphical
waveform viewer. These plots are postscript output, from the actual
data.

Full Simulation Examples: Simulation Example Using AvanWaves
A-11

Figure A-2 Plot of Voltage on Node in

f SR

Figure A-3 Plot of Voltage on Node clamp vs. Time

—J
—1
—

1) e o
=

srin G
Tk TINEL

% .
;5_ =

g
=

Full Simulation Examples: Simulation Example Using AvanWaves

A-12

Figure A-4 Plot of Voltage on Node invlout vs.Time

-
1

Y rLEE

“ammple hegich nel Lbing 2 1 smos ampilfer

L
aa |b L1 1 ..
H
R Y B T
|
R BN B NN P |
i I . .
B
1 H " "
i
- R 177 A
.
h

J

[T T - oo T T T =
o = join 10N @Mn IMn Madr dMn 400~ 410 I30n 60T BGON 4B TiA JMn WiZn dMn BAE- oS3m0 o

-

T e 1 I (T WA

Figure A-5

Plot of Voltage on Node inv2out vs. Time

TR

ok [in]
"
Pt

I'.I'-_:'
"_E..['_l..
ad 3k

IIII L

Full Simulation Examples: Simulation Example Using AvanWaves
A-13

Figure A-6 Plot of Current through Diode dlow vs. Time

Figure

2 mummph bpkis LG g o Bemar aman umplifier

,“ f

iy B
=
H

mdy .o
' Lo
: :
PR,
P
4 . L e Ctem i emmemmmmmemmeemee. s

e e — = -
N g0 A0n 180N S0Cn AMDn A20n A3)- 400 ofGn B3Da REDn A= BAIn THn TiIn 8- MEn M 930w

il T ! i TIME)

A-7 Plot of Measured Variable falltime vs. Amplifier Input Vol

tage

* oamphe eaclos Lt wIng A linenr cme wrpmiter

t T t T e T T T T T T
1 2 rd A 1E 7T 394 34 #v_ PN a LF 24 aa i * 43 44 oas el 13
L Curs Rum [y (T

Full Simulation Examples: Simulation Example Using AvanWaves

A-14

Simulation Example Using Cosmos-Scope

This example demonstrates the basic steps to perform simulation
output, and to view the waveform results, using the Synopsys
Cosmos-Scope Waveform Viewer.

Input Netlist and Circuit

The Syntax section below shows the input netlist for a BJT diff
amplifier. Comment lines indicate the individual sections of the
netlists. See Simulation Input and Controls on page 3-1, for
information about the individual commands.

SYNTAX:

*file: bjtdiff.sp bjt diff anp with every analysis type
*# ANALYSI S: ac dc tran tf noi se new four sens pz disto tenp
*# OPTIONS: |ist node ingol d=2 neasdgt=5 nundgt =8

+ probe post

*# TEMPERATURE: 25

* netlist options

.OPTION |'i st node ingold=2 neasdgt=6 nundgt=8 probe post
* defined paraneters

. PARAM r blx=auni f (20k, 1k, 30k) rb2x=auni f (20k, 1k, 30k)

* anal ysis specifications

.TF v(5) vin

.DC vin -0.20 0.20 0.01 sweep nonte=3

. AC dec 10 100k 10meghz

.NO SE v(4) vin 20

. NET v(5) vin rout=10k

.PZ v(5) vin

.DISTROrcl 20 .9 1Im1.0

. SENS v(4)

. TRAN 5ns 200ns

. FOUR 5neg v(5) v(15)

. TEMP -55 150

* out put specifications

. MEAS qga_propdly trig v(1) val =0.09 rise=1

+ targ v(5) val =6.8 rise=1

. MEAS ga_magni t ude nmax v(5)

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-15

. MEAS qga_rnspower rns power

. MEAS ga_avgv5 avg Vv(5)

. MEAS ac ga_bandwi dth trig at=100k targ vdb(5) val =36 fall =1
. MEAS ac qga_phase find vp(5) when vnm(5)=52.12
. MEAS ac qga_freq when vn(5)=52.12

. PROBE dc v(4) v(5) v(14) v(15)

. PROBE ac vm(5) vp(5) vm(15) vp(1l5)

. PROBE ac vt(5) vt(15)

. PROBE noi se onoi se(m inoise(nm

.PROBE ac z11(m z12(m z22(m) zin(m

. PROBE di sto hd2 hd3 sin2 din2 dinB8
.PROBE tran v(4) v(5) v(14) v(15)

. PROBE tran p(vcc) p(vee) p(vin) power

* source statenents

VIN1 O sin(0 0.1 5neg) ac 1

VCC 8 0 12

VEE 9 0 -12

* circuit statenents

gl 4 2 6 qgnl

gll 14 12 16 gpl

g2 53 6 gnl

g21 15 13 16 gpl

rsl 12 1k

rsil 1 12 1k

rs2 3 0 1k

rsi2 13 0 1k

rcl 4 8 10k

rcll 14 9 10k

rc2 5 8 10k

rcl2 15 9 10k

g3 6 7 9 gnl

gl3 16 17 8 qpl

g4 7 7 9 gnl

gqld 17 17 8 qpl

rbl 7 8 rblx

rb2 17 9 rb2x

* nodel definitions

. MODEL gnl npn(bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cj e=3pf
+ cj c=2pf va=50 rc=10 trb=.005 trc=. 005)
. MODEL gpl pnp(bf=80 rb=100 ccs=2pf tf=0.3ns tr=6ns cj e=3pf
+ cj c=2pf va=50 bul k=0 rc=10)

. END

Use the previous example (linear CMOS amp) to draw a circuit
diagram for this BJT diff amplifier. Also, specify parameter values.

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-16

Execution and Output Files

This section displays the various output files from a HSPICE
simulation of the BJT diff amplifier example. To execute the
simulation, enter:

hspice bjtdiff.sp > bjtdiff.lis

where the input file is bjtdiff.sp, and the output file is bjtdiff.lis.
Simulation creates the following output files:

Table A-2 Output Files

File Name Description

bjtdiff.ic Initial conditions for the circuit.

bjtdiff.lis Text simulation output listing.

bjtdiff.mtO Post-processor output, for MEASURE statements.
bjtdiff.st0 Run-time statistics.

bjtdiff.tr0 Post-processor output, for transient analysis.
bjtdiff.sw0 Post-processor output, for DC analysis.

bjtdiff.acO Post-processor output, for AC analysis.

bjtdiff. ma0 Post-processor output, for AC analysis measurements.

View HSPICE Results in Cosmos-Scope

The steps below show how to use the Synopsys Cosmos-Scope
Waveform Viewer, to view the results of AC, DC, and transient
analysis, from the BJT diff amplifier simulation. Refer to previous
examples of .lis, .ic, and .stO files.

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-17

Viewing HSPICE Transient Analysis Waveforms

1.

Invoke Cosmos-Scope.
From a Unix command line;

% cscope

On a Windows-NT system:

Prograns > (user _install _|ocation)> Cosnbs- Scope
Open the Open Plotfiles dialog box:

File > Open > Plotfiles

In the Open Plotfiles dialog box, in the Files of Type fields, select
the Hspice Transient (*.tr*) item.

In the menu, click on bjtdiff.trO, and click Open.
The Signal Manager and the bjtdiff Plot File windows open.

Hold down the Ctrl key, and select the v(4), v(5), and
ITPOWERD(power) signals.

Click on Plot from the bjtdiff Plot File window.
Three cascaded plots open.

To see three signals in one plot, right-click on the top-most signal
name.

The Signal Menu opens.
From the Signal Menu, select Stack Region > Analog O.
Repeat Step 7 for the next top-most signal.

A plot opens, similar to Figure A-8 on page A-19.

Full Simulation Examples: Simulation Example Using Cosmos-Scope

A-18

Figure A-8 Transient Analysis: Plot of v(4), v(5), and ITPOWERD (power)

7.0

%0

4.0

oD

Grapm . .
{TPOWRD) + i{#)
-8.1204, 1TPOWAD (pewer)
() s}
0.1207 4 e
oL v(5)
10,1206
0.1 205
0,520
oz
0.9202 |
012079 {
0124
n.1199- |
00 25n 500 78n WO0a 1Z5n 150m 17n P00n 22%n

Viewing HSPICE AC Analysis Waveforms

1. Fromthe Signal Manager dialog box, select bjtdiff(1), and click on
Close Plotfiles.

All transient plots (waveforms) close.
2. In the Signal Manager, click on Open Plotfiles.

3. Inthe Open Plotfiles dialog box, in the Files of Type fields, select
the Hspice AC (*.ac*) item.

4. Click on bjtdiff.ac0 in the menu, and click Open.
The bjtdiff Plot File windows open.

5. Hold down the Citrl key, and select the dim2(mag) and dim3(mag)
signals.

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-19

6. Click on Plot from the bjtdiff Plot File window.
Two cascaded plots open.

7. For two signals in a plot, right-click on dim2(mag).
A Signal Menu opens.

8. From the Signal Menu, select Stack Region > Analog 0.
A plot opens, similar to Figure A-9 on page A-20.

Figure A-9 AC Analysis Result: Plot of dim2(mag) and dim3(mag) from
bjtdiff.acO

Grapht
({DWM2} - Py [Herti)
am 1e- dnZi o

CDIME) < Fromwsmemcy (Fordz]
LT L

& s
g s
Do
[T -]
3
A

Rz — T T T T ; j T T T

" 1wy Zmag 2 gy Fomy By Tmey imay ey Ty
Frowarry [Pariz]

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-20

Viewing HSPICE DC Analysis Waveforms

1.

From the Signal Manager dialog box, select bjtdiff(1), and click on
Close Plotfiles.

All AC plots (waveforms) close.
In the Signal Manager, click on Open Plotfiles.

In the Open Plotfiles dialog, Files of Type field, select Hspice DC
(*.sw*).

Click on bjtdiff.swO and Open in the menu.
The Plot File windows open.

Hold down the Ctrl key, and select all signals.
Click on Plot from the bjtdiff Plot File window.
Four cascaded plots open.

To see four signals in one plot, right-click on the name of the top-
most signal.

A Signal Menu opens.
From the Signal Menu, select Stack Region > Analog O.
Repeat Steps 7 and 8 for the next two top-most signals.

A plot opens, similar to Figure A-10.

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-21

Figure A-10 DC Analysis Result: Plot of v(14), v(15), v(4), and v(5) from

bjtdiff.swO

v s i oomage e

is8 %)
w1}
;] -
: i :,m

58
£

-

-

- f T T i f T T T

0zs -0f &l5 -0 006 i 0o 1 05 TS 125
ol VAR

The Cosmos-Scope User’s and Reference Manual includes a full
tutorial, information about the various Scope tools, and reference
information about the Measure tool. You can also find more
information on the Synopsys website:

http:// www. Ssynopsys.com

Full Simulation Examples: Simulation Example Using Cosmos-Scope
A-22

Index

Symbols

IGND node 3-19

$ comment delimiter 3-10
$installdir installation directory 3-62
* comment delimiter 3-10

A

A2D

function 5-62

model parameter 5-62

output model parameters 5-66

See also mixed mode
.a2d file 3-76, 3-79, 5-62
ABS element parameter 5-59
abs(x) function 6-10
ABSH option 8-17, 8-26, 9-29, 10-18, 11-8
ABSI option 8-17, 8-18, 9-24, 9-27, 9-29
ABSMOS option 8-18, 9-24, 9-27, 9-29
absolute

power function 6-10

value function 6-10

value parameter 5-59
ABSTOL option 8-17, 9-22
ABSV option 8-26, 9-27, 10-18
ABSVAR option 8-30, 8-31, 10-19, 10-20,
10-26

ABSVDC option 8-18, 9-29
AC analysis 7-3
control options 11-8
distortion 11-12
magnitude 8-6, 8-26, 11-8
networks 11-17
noise 11-14
optimization 11-5
output 7-31, 8-6, 8-26, 11-8
phase 8-6, 8-26, 11-8
RC network 11-9
resistance 11-3
small signals 8-26, 11-2
sources 5-6
.AC statement 12-6, 12-41
external data 3-25
keywords 11-6
parameters 11-6
uses 11-4
.actt file 3-76, 3-78
ACCT option 7-18, 8-6
accuracy
control options 9-28
simulation time 9-28
tolerance 9-26, 10-24

ACCURATE option 8-26, 10-19, 10-26
ACM model parameter 10-27
acos(x) function 6-10

Index-1

ACOUT option 7-33—7-34, 8-6, 8-26, 11-8
adder
circuit 13-4
demo 13-3
NAND gate binary 13-4
subcircuit 13-3
admittance
AC input 7-36
AC output 7-36
Y parameters 7-32
AF model parameter 11-16
AGAUSS keyword 12-16
algebraic
expressions 6-8
models 10-26
algorithms
Damped Pseudo Transient algorithm 9-38
DVDT 8-30, 8-32, 10-16, 10-19, 10-32, 10-33
GEAR 8-33, 10-16, 10-28
integration 10-28
iteration count 10-32
Levenberg-Marquardt 12-56
local truncation error 8-27, 8-28, 8-33, 10-16,
10-20, 10-21, 10-32, 10-33
pivoting 8-20, 9-25
timestep control 8-30, 10-16, 10-31, 10-32,
10-34
transient analysis timestep 8-32, 10-16
TRAP 8-33, 10-16
trapezoidal integration 8-33, 10-17, 10-28
ALL keyword 9-6, 9-12
ALTER
blocks 3-45—-3-46
statement 3-44, 3-46, 3-52, 7-21
AM
source function 5-23, 5-23-5-24
Analog Artist interface 8-10, 8-12
See also Artist
analysis
AC 7-3
accuracy 9-26—9-28
data driven 12-2, 12-3

Index-2

analysis (continued)
DC 7-3
distortion 11-12
element template 7-3
Fourier 10-37
initialization 9-3
inverter 10-10
.MEASURE statement 7-3
Monte Carlo 12-3, 12-13, 12-13-12-34
network 11-17
optimization 12-41
parametric 7-3
pole/zero 9-21
RC network 10-9, 11-9
statistical 12-7-12-34
Taguchi 12-2
temperature 12-2, 12-6
transient 7-3, 10-2
worst case 12-2, 12-7-12-34
yield 12-2
arccos(x) function 6-10
arcsin(x) function 6-10
arctan(x) function 6-10
arithmetic expression measurement 7-59
arithmetic operators 6-10
ARTIST option 8-10, 8-12
ASCII output data 8-10, 8-11, 8-12
ASIC libraries 3-64
asin(x) function 6-10
ASPEC option 8-13
asterisk comment delimiter 3-10
AT keyword 7-46
atan(x) function 6-10
ATEM characterization system 3-62
AUNIF keyword 12-16
autoconvergence 8-23, 9-30, 9-32
AUTOSTOP option 8-28, 10-21, 10-24
average (AVG) measurement 7-47
average deviation 12-3
average value, measuring 7-51
AVG keyword 7-52

B

B# node name in CSOS 3-21
backslash continuation character 3-3, 6-9
BADCHR option 3-3, 8-14
behavioral
current source 5-51
voltage source 5-39
Behavioral capacitors 4-10
Behavioral resistors 4-5
BETA keyword 11-16
Biaschk 10-12
binary output 8-11
Bipolar Junction Transistors. See BJTs
bisection
data, printing 8-9
BJTs
current flow 7-27
element template listings 7-70
elements, names 4-20
EXPLI 8-17
power dissipation 7-29
S-parameters, optimization 12-63
BKPSIZ option 8-28, 10-21
bond wire example 13-10
branch current
error 8-17, 9-22, 9-29
output 7-25
breakpoint table
reducing size 10-36
size 8-28, 10-21
BRIEF option 8-3, 8-7, 8-8, 8-9, 9-6
Broyden update data, printing 8-9
BSIM model, LEVEL 13 3-34
BSIM2 LEVEL 39 model 3-34
buffer 4-43
bus notation 5-75
BYPASS option 8-28, 10-15
BYTOL option 8-29, 10-19

C

C Element (capacitor) 4-9
Cadence
Opus 8-10
WSF format 8-10
capacitance
charge tolerance, setting 8-26, 10-19
CSHUNT node-to-ground 8-26, 10-8, 10-15
CTYPE 4-10
element parameter 4-7
manufacturing variations 12-23
scale factor, setting 8-25
table of values 8-21, 9-22
capacitance-voltage plots, generating 8-21,
9-22
capacitor
conductance requirement 9-37
current flow 7-26
element 4-6, 4-9, 7-67
linear 4-9
models 3-34, 4-7
voltage controlled 5-52, 5-56
capacitors
charge-conserving 4-11
CAPOP model parameter 10-27
CAPTAB option 8-21, 9-22
CCCS element parameter 5-45
CCVS element parameter 5-58, 5-59
cell characterization 12-2
CENDIF optimization parameter 12-44
characterization of models 9-13
charge tolerance, setting 8-26, 10-19
CHGTOL option 8-26, 10-19, 10-33
circuits
adder 13-4
description syntax 2-5
inverter, MOS 10-10
nonconvergent 9-42
RC network 11-9
reusable 3-57

Index-3

circuits (continued)
subcircuit numbers 3-20
temperature 12-6, 12-7
See also subcircuits
CLOAD model parameter 5-66
CLOSE optimization parameter 12-44
CMOS
output driver demo 13-10
tristate buffer, optimization 12-58
CO option 7-16, 8-7
column laminated data 3-32
commands
Hspice 3-67—-3-74
limit descriptors 7-21
output 7-2
comment line
continuation 2-9
netlist 2-9
comment line (digital vector files) 5-100
comments 3-10
common
emitter gain 13-18
Common Simulation Data Format 8-10, 8-11
compression of input files 3-2
computer platforms for HSpice 1-6
concatenated data files 3-30
conductance
current source, initialization 8-23, 9-30
for capacitors 9-37
minimum, setting 8-26, 10-8, 10-22
models 8-22, 9-23
MOSFETs 8-23, 9-30
negative, logging 8-14
node-to-ground 8-23, 8-27, 9-23, 10-15
pn junction 9-45
scale, setting 8-25
sweeping 8-23, 9-23
configuration file 3-66
continuation character, parameter strings 6-9
continuation of line
netlist 2-9

Index-4

continuation of line (digital vector file) 5-100
control characters in input 3-3
control options
accuracy 8-17, 9-28
AC 8-26, 8-26—8-28
defaults 10-34
algorithm 8-32—77?
algorithm selection 9-21
analysis 8-10-8-12
convergence 8-21-8-24, 9-21, 9-28
DC convergence 9-22
DC operating point analysis 9-22
defaults 8-2
error 8-14
initialization 9-21
input and output 8-6-8-10, 8-21, 8-34
interface options 8-10—8-12
keyword table 8-3
limit 10-21
matrix-related 8-19—8-21
method 10-15
pole/zero 8-21-8-25
printing 7-16, 8-9
setting 8-3
speed 8-28—-8-29
table 8-6
timestep 8-30—8-32
tolerance 10-15
transient analysis
limit ?72-8-21, 10-21-10-23
method 10-15-10-17
tolerance 10-15-7?
version 8-14
controlled sources 5-26, 5-29
CONVERGE option 8-21, 8-23, 9-29, 9-32,
9-38
convergence
control options 9-28
current 8-17-7?, 8-18, 8-26, 8-27, 9-29, 9-30,
10-18-7?, 10-20, 11-8
ensuring 9-22
for optimization 12-45

convergence (continued)
increasing iterations 9-22
problems 9-39
analyzing 9-39
autoconverge process 9-32
causes 8-28, 9-42, 10-15
changing integration algorithm 8-33, 10-17
CONVERGE option 8-21, 8-23, 9-29, 9-38
DCON setting 8-22, 9-30, 9-33
decreasing the timestep 8-30, 10-22
diagnosing 9-39-9-45
diagnostic tables 9-39
floating point overflow 9-38
GMINDC ramping 9-33
internal timestep too small 8-33, 10-16
.NODESET statement 9-10
nonconvergent node listing 8-23, 9-30
operating point Debug mode 9-6
reducing 9-35
setting DCON 8-23, 9-30
steady state 8-23, 9-23
cos(x) function 6-10
cosh(x) function 6-10
CPTIME option 8-10
CPU time
limiting 8-10
reducing 8-8
setting maximum 8-10
CROSS keyword 7-45
CSCAL option 8-25
CSDF option 8-10, 8-11
CSHDC option 8-22, 9-22
CSHUNT option 8-26, 10-8, 10-15
CTYPE 4-10
current
ABSMOS floor value for convergence 8-19,
9-31
branch 7-26, 8-17, 9-22, 9-29
controlled
current sources 5-28, 5-45, 7-68
voltage sources 5-27, 5-58, 7-69

current (continued)
in HSPICE elements 7-26
operating point table 9-6
output 7-24
sources 5-49
CURRENT keyword 9-6
CUT optimization parameter 12-44
C-V plots 8-21, 9-22, 13-7
CVTOL option 8-16

D

D2A
function 5-62
input model parameters 5-64
model parameter 5-62
See also mixed mode
.d2a file 5-62

Damped Pseudo Transient algorithm 9-38
data
files, disabling printout 8-7, 8-8
flow, overview 1-8
DATA keyword 3-24, 9-15, 10-5, 11-6
.DATA statement 3-24, 3-29
data-driven analysis 3-24
datanames 3-25
external file 3-29, 3-31
for sweep data 3-24
inline data 3-26
inner sweep example 3-28
outer sweep 3-28
outer sweep example 3-28
data-driven analysis 12-2, 12-3
PWL source function 5-21
dataname 7-64
datanames 3-25

db(x) function 6-11
DC
analysis 7-3, 9-18-9-20
capacitor conductances 9-37
decade variation 9-15

Index-5

DC, analysis (continued)
initialization 8-22, 9-21, 9-22
iteration limit 8-19, 9-24
linear variation 9-15
list of points 9-15
octave variation 9-15
sensitivity 9-19
transfer function 9-20

convergence control options 9-21, 9-22
errors, reducing 9-35
operating point
analysis 9-6
bypassing 10-3
initial conditions file 3-67
See also operating point
optimization 9-14
sensitivity analysis 9-19
small-signal analysis 9-20
sources 5-6
sweep 9-13
transfer function 9-20
.DC statement 9-13, 12-6, 12-41
external data with .DATA 3-25

DCCAP option 8-21, 9-22, 13-6
DCFOR option 8-22, 9-22
DCHOLD option 8-22, 9-22
DCON option 8-22, 9-30, 9-32
DCSTEP option 8-22, 9-23, 9-37
DCTRAN option 9-30

.DCVOLT statement 9-8

DDL 3-62, 3-63, 13-18

DDLPATH environment variable 3-63, 13-18

DEBUG keyword 9-6

DEC keyword 9-15, 10-6, 11-6
decibel function 6-11

DEFAD option 8-16

DEFAS option 8-16
DEFAULT_INCLUDE variable 3-67
DEFL option 8-16

DEFNRD option 8-16

DEFNRS option 8-16

Index-6

DEFPD option 8-16
DEFPS option 8-16
DEFW option 6-17, 8-16
.DEL LIB statement 3-7
in .ALTER blocks 3-46
with .ALTER 3-52
with .LIB 3-52
with multiple .ALTER statements 3-47
DELAY element parameter 5-53, 5-59
delays
element example 5-56
group 7-35
measuring 7-43
time (TD) 7-35
DELMAX option 8-30, 8-31, 10-22, 10-23,
10-25, 10-26, 10-35, 10-39
DELTA
element parameter 5-53, 5-59
internal timestep 8-30, 10-22
See also timestep
DELVTO model parameter 12-9
demo files
2n2222 BJTs transistor characterization
13-31
2n3330 JFETSs transistor characterization
13-31
A/D flash converter 13-28
A2D 13-28
AC analysis 13-25
acl gate 13-26
adders
72-transistor two-bit 13-27
BJT NAND gate two-bit 13-25
BJT two-bit 13-25
D2A 13-28
MOS two-bit 13-25
NAND gate four-bit binary 13-25
air core transformer 13-34
algebraic
output variables 13-24
parameters 13-24
transmission lines 13-38
ALTER statement 13-25

demo files (continued)
AM source 13-37
amplifier 13-28
amplitude modulator 13-26
analog 13-27
AND gate 13-26
automatic model selection program 13-35
behavioral applications 13-26—13-27
behavioral models 13-27
diode 13-26
D-latch 13-26
filter 13-24
NAND gate 13-26
ring oscillator 13-26
triode 13-27
voltage to frequency converter 13-24
benchmarks 13-27
bisection 13-27, 13-28
BJTs
analog circuit 13-27
beta plot 13-27
differential amplifier 13-25, 13-28
diodes 13-27
ft plot 13-27
gm, gpi plots 13-27
photocurrent 13-37
Schmidt trigger 13-25
sense amplifier 13-25
BSIM3 model, LEVEL=47 13-34
capacitances, MOS models
LEVEL=13 13-34
LEVEL=2 13-34
LEVEL=6 13-35
cell characterization 13-25, 13-26, 13-28
charge conservation, MOS models
LEVEL=3 13-35
LEVEL=6 13-35
circuit optimization 13-28
CMOS
differential amplifier 13-25
I/O driver ground bounce 13-25, 13-38
input buffer 13-28

demo files, CMOS (continued)

inverter macro 13-26
output buffer 13-28
coax transmission line 13-38
crystal oscillator 13-25
current controlled
current source 13-26
voltage source 13-27
D2A 13-28
DC analysis, MOS model LEVEL=34 13-35
DDL 13-28-13-31
delay 13-25, 13-28
device optimization 13-31-13-32
differential amplifier 13-25
differentiator 13-26
diffusion effects 13-25
diode photocurrent 13-36
D-latch 13-26
E Element 13-26
edge triggered flip-flop 13-26
exponential source 13-37
FFT
AM source 13-32
analysis 13-32—13-33
Bartlett window 13-32
Blackman window 13-32
Blackman-Harris window 13-33
data-driven transient analysis 13-33
exponential source 13-32
Gaussian window 13-33
Hamming window 13-33
Hanning window 13-33
harmonic distortion 13-32
high frequency detection 13-32
intermodulation distortion 13-33
Kaiser window 13-33
modulated pulse source 13-33
Monte Carlo, Gaussian distribution 13-33
product of waveforms 13-33
pulse source 13-33
PWL 13-33
rectangular window 13-33

Index-7

demo files, FFT (continued)

single-frequency FM source 13-33
sinusoidal source 13-33
small-signal distortion 13-32
switched capacitor 13-33
transient 13-32
window tests 13-33

filter matching 13-28

filters 13-34
behavioral 13-24
fifth-order 13-27, 13-34
fourth-order Butterworth 13-34
Kerwin's circuit 13-34
LCR bandpass 13-34
matching lossy to ideal 13-28
ninth-order low-pass 13-26, 13-34
switched capacitor low-pass 13-25

FR-4 microstrip transmission line 13-34,

13-37

G Element 13-25, 13-26

GaAsFET amplifier 13-25

gamma model LEVEL=6 13-35

general applications 13-25

ground bounce 13-25, 13-38

group time delay 13-25

impact ionization plot 13-35

input 13-24

installation test 13-27

integrator 13-26

inverter 13-25, 13-26, 13-28
characterization 13-28

IRF340 NMOS transistor characterization

13-31

I-V plots
LEVEL=3 13-35
MOSFETS model LEVEL=13 13-35
SOSFETS model LEVEL=27 13-35

JFETs photocurrent 13-37

junction tunnel diode 13-27

LCR circuit 13-28

lumped
MOS model 13-25
transmission lines 13-34, 13-38

Index-8

demo files (continued)

magnetic core transformer 13-34
magnetics 13-34
microstrip transmission lines 13-34, 13-38
coupled 13-38
optimization 13-38
series 13-38
Monte Carlo analysis 13-25
Gaussian distribution 13-25
limit function 13-25
uniform distribution 13-25
MOS 13-27, 13-28
MOSFETs 13-34-13-35
sigma sweep 13-28
sweep 13-25
NAND gate 13-26
NMOS E-mode model, LEVEL=8 13-37
noise analysis 13-25
op-amp 13-25, 13-26
characterization 13-29-13-31
voltage follower 13-26, 13-37
optimization 13-26
2n3947 Gummel model 13-32
DC 13-31
diode 13-32
GaAs 13-32
group delay 13-28
Hfe 13-31
-V 13-32
JFETs 13-32
LEVEL=2 model beta 13-31
LEVEL=28 13-32
MOS 13-32
s-parameter 13-31
speed, power, area 13-28
width 13-28
parameters 13-24
phase
detector 13-26
locked loop 13-25
photocurrent 13-35—-13-37
GaAs device 13-37
photolithographic effects 13-25

demo files (continued)
pll 13-25
pole/zero analysis 13-25, 13-34
pulse source 13-37
PWL 13-37
CCCS 13-26
CCVS 13-27
switch element 13-27
VCCS 13-26, 13-27
VCO 13-27
VCVS 13-26
radiation effects 13-35—13-37
bipolar devices 13-35-13-36
DC I-V, JFETs 13-37
GaAs differential amplifier 13-37
JFETs devices 13-36
MOSFETs devices 13-36
NMOS 13-37
RC circuit optimization 13-28
resistor temperature coefficients 13-28
RG58/AU coax test 13-34
ring oscillator 13-26
Royer magnetic core oscillator 13-34
Schmidt trigger 13-25
sense amplifier 13-25
series source coupled transmission lines
13-38
setup 13-27, 13-28
characterization 13-28
shunt terminated transmission lines 13-38
silicon controlled rectifier 13-27
sine wave sampling 13-26
single-frequency FM source 13-37
sinusoidal source 13-37
skew models 13-25
SNAP to HSPICE conversion 13-27
sources 13-37
s-parameters 13-27, 13-34, 13-35
sweep 13-25
switch 13-26
switched capacitor 13-25, 13-27, 13-37

demo files (continued)
temperature effects
LEVEL=13 13-35
LEVEL=6 13-35
timing analysis 13-27
total radiation dose 13-36
transient analysis 13-25
transistor characterization 13-31
transmission lines 13-37—13-38
triode model 13-27
tunnel diodes 13-27
twinlead transmission line model 13-38
U models 13-38
unity gain frequency 13-28
Viewsim
A2D input 13-28
D2A input 13-28
voltage follower 13-26
voltage-controlled
current source 13-26, 13-27
oscillator 13-24, 13-27
resistor inverter 13-37
voltage source 13-26
voltage-to-frequency converter 13-24
voltage-variable capacitor 13-26
waveform smoothing 13-26
worst case skew model 13-25
DERIVATIVE keyword 7-54
derivative, measuring 7-48
design
name 3-65
deviation, average 12-3
device characterization 3-62

DI control option 8-18, 8-27, 9-30, 10-19, 11-8

DIAGNOSTIC option 8-14
diagnostic tables 9-39-9-40
DIFSIZ optimization parameters 12-45
digital
files 5-62
input 5-62
vector file 5-72

Index-9

digital vector file

Waveform Characteristics section 5-86
DIM2

distortion measure 11-12

parameter 7-37
DIM3

distortion measure 11-12

parameter 7-37
diodes

breakdown example 5-57

current flow 7-26

elements 7-69

equations 5-57

junction 4-18

models 3-34, 4-18

polysilicon capacitor length 4-18

power dissipation 7-29
directories

installation directory 3-62

tmp 3-71
.DISTO statement 11-12, 11-13
distortion 7-37, 11-12
dollar sign ($) comment delimiter 3-10
.DOUT statement 5-83
drain-to-source current 8-18, 9-29
DTEMP parameter 12-5, 12-6, 12-7, 13-16
DV option 8-22, 8-23, 9-23, 9-30, 9-32
DVDT

algorithm 8-30, 8-31, 10-19, 10-20, 10-29,

10-32
option 8-30, 8-32, 10-16, 10-25, 10-32,
10-33, 10-34

DVTR option 8-32, 10-22
dynamic timestep algorithm 10-33

E

E Elements
applications 5-27
element multiplier 5-41
syntax statements 5-38
temperature coefficients 5-42
time delay keyword 5-42

Index-

electrical measurements 13-18
Element
capacitance
CTYPE 4-10
element
active
BJTs 4-19
diodes 4-17
JFETs 4-22
MESFETs 4-22
MOSFETs 4-24
C (capacitor) 4-9
checking, suppression of 8-8
IC parameter 9-8
identifiers 2-8
independent source 5-2, 5-8
instantiate 2-8
L (inductor) 4-16
markers, mutual inductors 4-15
names 3-18
OFF parameter 8-24, 9-5, 9-24
parameters See element parameters 4-1
passive
capacitors 4-6
inductor 4-11
mutual inductor 4-14
resistors 4-2
R (resistor) 4-4
statements 3-11, 3-62
current output 7-25
independent sources 5-2
subcircuits 3-16
temperature 12-7
templates 7-38—7-67
analysis 7-3
BJTs 7-70
capacitor 7-67
current-controlled 7-68
function 6-11
independent 7-69
inductor 7-67
JFETs 7-72
MOSFETs 7-73
mutual inductor 7-68

element, templates (continued)
resistor 7-67
saturable core 7-76
voltage-controlled 7-68
transmission line 4-28, 4-33, 4-35
voltage-controlled 5-26
element parameters
.ALTER blocks 3-46
BJTs 4-20
capacitors 4-7—4-8
DTEMP 12-5
F Elements 72-5-47
G Elements ?72-5-55
H Elements 5-59-5-60
IBIS buffers 4-43
independent sources 5-2-5-3
data driven PWL function 5-20
PULSE function 5-9, 5-12, 5-15, 5-17
SFFM function 5-22
inductors 4-12—4-13
JFETs and MESFETs 4-22
linear inductors 4-12
MOSFETs 4-24-4-25
mutual inductors, Kxxx 4-15
POLY 5-29
PWL 5-18, 5-21
resistors 4-2—4-3
transmission lines
T Element 4-33
U Element 4-35
W Element 4-29, 4-29
enable (digital vector file) 5-80
.END statement
for multiple HSPICE runs 3-55
in libraries 3-38
location 3-55
missing 3-2
with .ALTER 3-47
ENDDATA keyword 3-27, 3-29, 3-31
.ENDL statement 3-35, 3-36
.ENDS statement 3-15

environment variables 2-2, 3-63, 13-18
.EOM statement 3-15
EPSMIN option 8-10
equations 7-51, 7-57
ERR function 7-56, 7-57
ERR1 function 7-56, 7-58, 12-38
ERR2 function 7-56, 7-58
ERR3 function 7-56, 7-59
errors
cannot open
output spool file 7-21
current exceeding MAXAMP 8-27, 10-20
DC 9-35
digital file has blank first line 5-62
file open 3-71
functions 7-56—7-59
internal timestep too small 8-23, 8-26, 8-27,
8-32, 8-33, 9-5, 9-23, 9-43, 10-4, 10-8,
10-15, 10-16, 10-23
missing .END statement 3-2
no DC path to ground 9-37
no input data 3-71
optimization goal 7-44
parameter name conflict 7-42
special characters in input 3-3
system resource inaccessible 7-21
tolerances
ABSMOS 8-18, 9-29
branch current 8-17, 9-22, 9-29
pole/zero analysis 8-25
relative change 8-19, 8-27, 9-31, 10-20
RELMOS 8-18, 9-29
voltage 8-19, 8-27, 9-31, 10-20
example
AC analysis 7-33, 11-9
comment line 2-9
.DATA 3-28
digital vector file 5-100
experiments 1-7
first character 2-7
HSPICE vs. SPICE methods 7-33

Index-

example (continued)
Monte Carlo 12-18, 12-26
netlist file 2-6

network analysis, bipolar transistor 11-23

optimization 12-46
.OPTION SEARCH 3-39
subcircuit 3-16
subcircuit node names 2-10
subcircuit test 3-14
transient analysis 10-9, 10-10
worst case 12-26
EXP source function
fall time 5-15
initial value 5-15
pulsed value 5-15
rise time 5-15
exp(x) function 6-11
experiment 1-7
EXPLI option 8-17
EXPMAX option 8-10
exponential function 5-15, 6-11
expressions, algebraic 6-8
external data files 3-8, 3-25

F

F Elements
applications 5-28
multiply parameter 5-46
syntax statements 5-45
time delay keyword 5-47
value multiplier 5-47
FALL keyword 7-45
fall time
EXP source function 5-15
FAST option 8-29, 10-19, 10-24
FIL keyword 3-25
file descriptors limit 7-21
files
.a2d 3-76, 3-79, 5-62
AC analysis 3-78

Index-

files (continued)

.ac# 3-76
column lamination 3-32
concatenated data files 3-30
.d2a 5-62
DC analysis 3-78
external data 3-8, 3-24
filenames 3-26
ft# 3-76, 3-79
.gr# 3-76
graph data 1-8, 3-79
hspice.ini 3-63, 8-11
.ic 3-77,9-5
include files 3-7, 3-33, 3-38
including 3-67
initialization 3-67
input 1-8, 3-68
limit on number 7-21
lis 3-76
.ma# 3-76
.ms# 3-76
.mt# 3-76
multiple simulation runs 3-55
names 3-65, 3-68—3-69
output
listing 3-77
names 3-69
status 3-79
version number 3-68
.pa# 3-76
scratch files 3-71
.St# 3-77
subcircuit node cross-listing 3-79
.Sw# 3-76
Ar# 3-76
transient analysis 3-78

FIND keyword 7-48

first character descriptions 2-7
floating point overflow

CONVERGE setting 8-22, 9-30
setting GMINDC 8-23, 9-30

FMAX 8-25

Fourier

analysis 10-37

coefficients 10-39

equation 10-39
.FOURIER statement 10-38
FREQ

model parameter 7-13
frequency

maximum

setting 8-25

ratio 11-13

setting scale 8-25

sweep 11-7

variable 6-13
FROM parameter 7-57
FS option 8-30, 8-32, 10-22, 10-23, 10-35,
11-16
FSCAL option 8-25
FT option 8-31, 8-32, 10-22, 10-23, 10-34,
10-35
ft# file 3-76, 3-79
functions

A2D 5-62

built-in 6-10-6-13

D2A 5-62

DERIVATIVE 7-54

ERR 7-56

INTEG 7-53

NPWL 5-52

PPWL 5-52

table 6-10

See also independent sources

G

G Elements
applications 5-28
controlling voltages 5-53, 5-55
current 5-53
curve smoothing 5-54
element value multiplier 5-54
gate type 5-53

G Elements (continued)

initial conditions 5-53

multiply parameter 5-53

names 5-53

polynomial 5-54

resistance 5-53

syntax statements 5-49

time delay keyword 5-54

transconductance 5-54

voltage to resistance factor 5-55
GaAsFET model DC optimization 12-70
gain, calculating 7-33
GAUSS

functions 12-19

keyword 12-16

parameter distribution 12-13, 12-14
GEAR algorithm 8-33, 10-16, 10-28
GENK option 8-17
global

node names 3-22

parameters 6-15
.GLOBAL statement 3-21
GMAX option 8-23, 9-30
GMIN option 8-23, 8-26, 9-30, 9-45, 10-8,
10-22
GMINDC option 8-23, 9-30, 9-32, 9-45
GND node 3-19
GOAL keyword 7-52, 12-38
.gr# file 3-76, 3-79, 7-11
GRAD optimization parameter 12-45
gradient data, printing 8-9
GRAMP

calculation 8-22, 9-30

option 8-23, 9-23, 9-30, 9-32, 9-36
graph data file (Viewlogic format) 1-8, 8-10,
8-11
.GRAPH statement 7-2, 7-11, 7-21, 13-6
ground

node name 3-19
GSCAL

multiplier 8-25

option 8-25

Index-

GSHUNT option 8-23, 8-27, 9-23, 10-15
Gxxx element parameters 5-53

H

H Elements
applications 5-28
controlling voltage 5-60
data points 5-59
element multiplier 5-60
element name 5-59
gate type 5-59
initial conditions 5-59
maximum current 5-59
minimum current 5-59
syntax statements 5-58
time delay keyword 5-60
transresistance 5-60
H parameters 11-23
H9007 option 8-14
harmonic distortion 11-12
HD2 distortion 7-37, 11-12
HD3 distortion 7-37, 11-12
hertz variable 6-13
hierarchical designs, flattened 3-7
HSPICE
installation directory 3-62
job statistics report 7-18—7-20
output, redirecting 3-69
starting 3-70
version
95.3 compatibility 10-35
H9007 compatibility 8-14
parameter 3-34
hspice command 3-67-3-74
hspice.ini file 3-63, 8-11
hybrid (H) parameters 7-32

IBIS buffers 4-43

Index-

.ic file 3-77, 9-5
IC parameter 5-53, 5-59, 9-8, 9-9, 9-12
.IC statement 9-3, 9-4, 9-9
from .SAVE 9-11
ICSWEEP option 8-24, 9-23
ideal
current sources 9-36
delay elements 5-27, 5-28, 10-26
op-amp 5-27, 5-40, 5-42
transformer 5-27, 5-40, 5-44
idelay (digital vector file) 5-87
IDELAY statement 5-87
IGNOR keyword 7-56
imaginary
part of AC voltage 7-33—7-34
vs. real component ratio 8-25
IMAX option 8-31, 8-32, 10-22, 10-32
IMIN option 8-31, 8-32, 10-22, 10-32
impedance
AC 7-36
Z parameters 7-32

inactive devices
See latent devices

include files 3-33, 3-38, 3-67

.INCLUDE statement 3-7, 3-33, 3-46, 3-63,

3-65

independent sources
AC 5-3,5-6
AM function 5-23
current 5-3, 7-69
data driven PWL function 5-20
DC 5-3, 5-6
elements 5-2
EXP function 5-15
functions 5-8
mixed types 5-7
PULSE function 5-8
PWL function 5-17
SFFM function 5-22
SIN function 5-12
transient 5-3, 5-7

independent sources (continued)
types 5-8
voltage 5-3, 7-69
See also sources
indepout 7-64
indepvar 7-63, 7-64, 7-65
individual element temperature 12-6
inductance, scale 8-25
inductors
current flow 7-26
element 4-11, 7-67
GENK 8-17
KLIM 8-17
mutual models 3-34
node names 4-12
INGOLD option 8-7, 8-8
initial conditions 9-3
file 3-67
saving and reusing 8-24, 9-23
statement 9-8
transient 10-6
initialization 8-24, 9-3, 9-4, 9-24
file 3-67
saved operating point 9-11
inline data 3-26
inner sweep 3-29
INOISE parameter 7-37
input
admittance 7-36
data
adding library data 3-52
column laminated 3-32
concatenated data files 3-30
deleting library data 3-52
external, with .DATA statement 3-24
filenames on networks 3-33
for data driven analysis 3-24
formats 3-27, 3-31, 3-32
include files 3-33
printing 8-7
suppressing printout 8-7

input (continued)

files
character case 3-3
compression 3-2
configuration file 3-66
control characters 3-3
DC operating point 3-67
demonstration 13-24
initialization 3-67
names 3-65, 3-68
netlist 3-2
structure 3-7
table of components 3-8
unprintable characters 3-3

impedance 7-36

netlist 2-5
netlist file
See also input files
3-9-3-55, A-2
input stimuli 7-62
input/output

cell modeling 13-21

digital vector file 5-77
installation directory $installdir 3-62
int(x) function 6-11
INTEG keyword 7-52, 7-53
integer function 6-11
integration

algorithms 10-28

backward Euler method 8-33, 10-16

order of 8-33, 10-16
interfaces

Analog Artist 8-10

AvanWaves 7-2

Mentor 8-11

MSPICE 8-11

ZUKEN 8-12
intermodulation distortion 11-12
internal

nodes, referencing 3-19
INTERP option 8-34, 10-16
interstage gain 7-33

Index-

inverter
analysis, transient 10-10
circuit, MOS 10-10
iterations
algorithm 10-30
count algorithm 10-32
limit 8-19, 9-24
maximum number of 8-31, 10-22
number 12-56
ITL1 option 8-19, 8-22, 9-24, 9-30
ITL2 option 9-24
ITL3 option 8-31
ITL4 option 8-31
ITL5 option 8-31, 10-22
ITLPZ option 8-25, 8-29

ITROPT optimization parameter 12-45

ITRPRT option 8-34, 10-16
I-V and C-V plotting demo 13-6

J

Jacobian data, printing 8-9
JFETs
current flow 7-26
elements 4-22, 7-72
length 4-22
power dissipation 7-30
width 4-22

K

KCLTEST 8-18, 9-24

keyword
reserved 2-11

keywords
.AC statement parameters 11-6
analysis statement syntax 12-41
DATA statement parameters 3-24
.DC statement parameters 9-15
DTEMP 12-5
ERR1 12-38

Index-

keywords (continued)
FS 11-16
GOAL 12-38
LAST 7-46, 7-49, 7-50
.MEASUREMENT statement parameters
7-52
.MODEL statement parameters 7-12
MONTE 12-14
optimization syntax 12-40
PAR 6-9
PP 7-51, 7-52
source functions 5-2
target syntax 7-46
.TRAN statement parameters 10-5
weight 7-52
KF model parameter 11-16
Kirchhoff's Current Law (KCL) test 8-18, 9-24

KLIM option 8-17

L

L Element (inductor) 4-16
LAM keyword 3-25, 3-32
laminated data 3-32
LAST keyword 7-46, 7-49, 7-50
latent devices
BYPASS option 8-28, 8-29, 10-15, 10-19
BYTOL option 8-29, 10-19
excluding 8-29, 10-19
MBYPASS option 8-29, 10-19
removing from simulation 8-29, 10-19
VNTOL option 8-29, 10-19
leadframe example 13-10
LENGTH model parameter 12-22
LENNAM option 8-7
LEVEL parameter 12-45
Levenberg-Marquardt algorithm 12-56
.LIB
call statement 3-35
definition statement 3-36
statement 3-7, 3-65

.LIB (continued)
in .ALTER blocks 3-35, 3-46
nesting 3-37
with .DEL LIB 3-52

with multiple .ALTER statements 3-47

libraries
adding with .LIB 3-52
ASIC cells 3-64
building 3-36, 3-37
configuring 6-18
creating parameters 6-15
DDL 3-39, 3-62
defining macros 3-36
deleting 3-52
duplicated parameter names 6-15
.END statement 3-38
integrity 6-14
private 3-43
protecting 3-43
search 3-63
selecting 3-40
subcircuits 3-65
vendor 3-64
limit descriptors command 7-21
LIMIT keyword 12-16
LIMPTS option 8-12
LIMTIM option 8-10
LIN keyword 9-15, 10-6, 11-6
linear
capacitor 4-9
inductor 4-16
resistor 4-4
lis file 3-76, 3-77
LIST option 8-7
listing
page width 7-16
suppressing 3-43
LM_LICENSE_FILE 2-2
LMAX model parameter 1-5
LMIN model parameter 1-5
.LOAD statement 9-10

local
parameters 6-15
truncation error algorithm 8-27, 8-28, 8-33,
10-16, 10-20, 10-21, 10-32, 10-33
log(x) function 6-10
log10(x) function 6-10
logarithm function 6-10
LSCAL option 8-25
LV 7-38
LV18 model parameter 13-7
LVLTIM option 8-28, 8-31, 8-32, 8-33, 10-16,
10-17, 10-20, 10-21, 10-26, 10-32, 10-34
LX 7-38
LX7 model parameter 13-7
LX8 model parameter 13-7
LX9 model parameter 13-7

M

M element parameter 5-46, 5-53
.ma# file 3-76, 3-78

.MACRO statement 3-14
macros 3-36, 3-52

magnetic core models 3-34

magnitude
AC voltage 7-34

magnitude, AC voltage 7-31, 7-33
.MALIAS

statement 3-50
manufacturing tolerances 12-21
Marquardt scaling parameter 12-56
mask (digital vector file) 5-88
matrix

calculations 8-19, 9-24

minimum pivot values 8-21, 9-26

parameters 11-17

row/matrix ratio 8-20, 9-25

size limitation 8-20, 9-25
MAX parameter 5-53, 5-59, 7-52, 12-45
max(x,y) function 6-11

Index-

MAXAMP option 8-18, 8-27, 9-24, 10-20, 11-8
MAXFLD keyword 11-16
maximum
number size 8-10
value, measuring 7-51
MAXORD option 8-33, 10-16
MBYPASS option 8-29, 10-19, 10-20
mean, statistical 12-3
MEASDGT option 8-7
MEASFAIL option 8-35
MEASOUT option 8-11
measure
data output formatting 8-7
parameter types 7-42
.MEASURE statement 7-2, 7-3, 7-42, 8-7, 8-11
expression 7-59
failure message 7-40
parameters 6-7
performance 7-40
Mentor interface 8-11
MENTOR option 8-11
MER keyword 3-25, 3-30, 3-32
MESFETs 4-22
messages
pivot change 8-20, 9-25
See also errors, warnings
METHOD option 8-33, 10-17
Meyer and Charge Conservation parameters
7-75
MIN parameter 5-53, 5-59, 7-52
min(x,y) function 6-11
minimum
number size 8-10
value, measuring 7-51
MINVAL keyword 7-52, 7-57
mixed mode
simulation 5-62
See also D2A, A2D
mixed sources 5-7

Index-

model analysis options 8-15, 8-15-8-16
BJTs, EXPLI 8-17
DCAP 8-15
inductors 8-17
MODSRH 8-15
MOSFETs 8-16
SCALM 8-15
TNOM 8-15
MODEL keyword 9-15, 12-41
model parameters
A2D 5-62
ALTER blocks 3-46
capacitance distribution 12-23
D2A 5-62, 5-64
DELVTO 12-9
DTEMP 12-6
.GRAPH statement parameters 7-13
LENGTH 12-22
LEVEL 12-45
manufacturing tolerances 12-21
MONO 7-13
output 7-13
PHOTO 12-22
RSH 12-9
sigma deviations, worst case analysis 12-9
skew 12-8
suppressing printout of 8-8
TEMP 3-22,12-6
temperature analysis 12-6
TIC 7-13
TOX 12-9
TREF 12-4, 12-6, 12-7
XPHOTO 12-22
model parameters See model parameters
diodes
.MODEL statement 3-33, 12-6
for .GRAPH 7-12
HSPICE version parameter 3-34
model name 3-34
optimization syntax 12-43

models
algebraic 10-26
BJTs 3-34
BSIM LEVEL 13 3-34
BSIM2 LEVEL 39 3-34
capacitors 3-34
characterization 9-13
diode 3-34
DTEMP parameter 13-16
JFETs 3-34
Lv18 13-7
LX7, LX8, LX9 13-7
magnetic core 3-34
Monte Carlo analysis 12-13, 12-17, 12-26
MOSFETs 3-34
mutual inductors 3-34
names 3-34
op-amps 3-34
optimization 3-34
plot 3-34
private 3-43
protecting 3-43
reference temperature 12-6
simulator access 3-38
specifying 3-63
subcircuit MULTI 3-16
types 3-34
typical set 12-12
MONO model parameter 7-13
Monte Carlo
AC analysis 11-5
analysis 12-2, 12-3, 12-26—-12-34
demo files 13-25
distribution options 12-16-12-17
DC analysis 9-14
time analysis 10-5
MONTE keyword 10-5, 11-6, 12-14
MOS
inverter circuit 10-10
op-amp optimization 12-73

MOSFETs
current flow 7-27
drain diffusion area 4-24
elements 4-24, 7-73
initial conditions 4-25
model analysis options 8-16—7?
node names 4-24
perimeter 4-25
power dissipation 7-31
SCALM 8-16
source 4-24, 4-25
squares 4-25
temperature differential 4-25
WL 8-16
zero-bias voltage threshold shift 4-25
.ms# file 3-76, 3-78
MSPICE simulator interface 8-11
.mt# file 3-76, 3-78
MU option 8-33, 10-20
Muller algorithm 8-25
MULTI 3-16
multiple .ALTER statements 3-46

multiplier
GSCAL 8-25

multiply parameter 3-16, 3-58, 4-3, 5-3
multipoint experiment 1-7
multithreading 3-74

mutual inductor 4-14, 7-68

N
namei 7-63, 7-64, 7-65
NAND gate adder 13-4
natural
log function 6-10
n-channel, MOSFET’s models 3-34
NDIM 5-29
negative conductance, logging 8-14
nested library calls 3-37
.NET statement 11-17

Index-

netlist 3-7
file example 2-6
flat 3-7
input files 3-2
schematic 3-7
structure 2-5
network
analysis 11-17
filenames 3-33
output 7-36, 11-18
variable specification 11-21
NEWTOL option 8-24, 9-24
nodal voltage output 7-24, 7-32
NODE option 3-44, 8-8
nodes
connection requirements 3-19
cross-reference table 8-8
floating supply 3-19
global versus local 3-22
internal 3-19
MOSFET's substrate 3-19
names 3-17, 3-19, 3-21, 13-6
automatic generation 3-21
ground node 3-19
period in 3-18
subcircuits 3-19
zeros in 3-20
numbers 3-17, 3-19
phase or magnitude difference 7-33
printing 8-8
shorted 9-37
terminators 3-19
NODESET keyword 9-12
.NODESET statement 8-22, 9-3, 9-22
DC operating point initialization 9-10
from .SAVE 9-11
node-to-element list 8-20, 9-25
NOELCK option 8-8
noise
calculations 11-15
folding 11-16

Index-

noise (continued)
input 7-37
numerical 8-26, 10-8, 10-15
output 7-37, 11-15
sampling 11-16
.NOISE statement 11-14
NOMOD option 8-8
NONE keyword 9-6, 9-12
NOPAGE option 8-8
NOPIV option 8-19, 9-24
norm of the gradient 12-55
NOTOP option 8-8
NOWARN option 8-14
NPDELAY element parameter 5-59
npn BJT models 3-34
npoints 7-63, 7-64, 7-65
NPWL
function 5-52
numbers
formatting 8-7, 8-8
maximum size 8-10
minimum size 8-10
NUMDGT option 8-8

numerical integration algorithms 8-33, 10-17
numerical noise 8-23, 8-26, 8-27, 9-23, 10-8,

10-15
NUMF keyword 11-16
NXX option 8-7, 8-8

O

OCT keyword 9-15, 10-6, 11-6
odelay (digital vector file) 5-87
ODELAY statement 5-87

OFF parameter 8-24, 9-5, 9-24
one-dimensional function 5-29
ONOISE parameter 7-37

.OP statement 9-5, 9-6, 10-3
.OP statement parameters 9-6

op-amps
model
names 3-34
open loops 9-36
optimization 12-73
operating point
capacitance 8-21, 9-22
estimate 9-5, 10-3
.IC statement initialization 9-9
initial conditions 3-67
.NODESET statement initialization 9-10
restoring 9-13
saving 3-21, 9-11
solution 8-24, 9-4, 9-5, 9-24
transient 10-3
voltage table 9-6
operating systems, HSPICE 1-6
operators 6-10
OPT keyword 12-40
optimization
AC analysis 11-5, 12-63
algorithm 12-45
analysis statements 12-41
CMOS tristate buffer 12-58
control 12-37
convergence options 12-37
curve-fit 12-38
cv 13-32
data-driven vs. s-parameters 12-63
DC analysis 9-14, 12-48, 12-51, 12-66, 12-70
error function 7-44
example 12-46, 13-22
goal 12-38
incremental 12-66
iterations 12-45
lengths and widths 12-73
MODEL keyword 12-41
.MODEL statement 12-43
models 3-34
MOS 12-51, 12-73
network 12-53, 12-63
.PARAM statement 12-42

optimization (continued)
parameters 12-63
magnitude and phase 12-63
measured vs. calculated 12-63
.MODEL statement 12-44-12-45
results
function evaluations 12-56
iterations 12-56
Marquadt scaling parameter 12-56
norm of the gradient 12-55
residual sum of squares 12-55
S parameters 12-63
simulation accuracy 12-37
simultaneous 12-58, 12-70, 12-73
statements 12-40
syntax 12-40
time
analysis 10-5, 12-39
required 12-37, 12-44
OPTIMIZE keyword 9-15, 12-40
.OPTION 9-26
ACCT, summary of job statistics 7-18
ALT999 or ALT9999 extension 7-17
ALTER blocks 3-46
CO, for printout width 7-16
DCSTEP 9-37
DI 8-18, 8-27, 9-30, 10-19, 11-8
INGOLD, for printout numerical format 7-17
keyword application table 8-3
POST, for high resolution graphics 7-18
SEARCH 3-39
statement 8-2
OPTLST option 8-9
OPTS option 8-9
OPTxxx parameter 12-38, 12-40
Opus 8-10
oscillation, eliminating 8-33, 10-17
oscillators
DELMAX option setting 10-26

out (digital vector file) 5-92

outer sweep 3-29

Index-

output P

dmittance 7-36 _
Sorr:mands 7-2 .pa# file 3-76, 3-79

current 7-24 packed input files 3-2
data page eject, suppressing 8-8
format 8-7, 8-12 PAR keyword 6-5, 6-9
limiting 8-12, 8-34, 10-16 .PARAM statement 3-16—3-22, 3-41, 7-42,
number format 8-7 7-62, 12-2
redirecting 3-69 in .ALTER blocks 3-46
significant digits specification 8-8 optimization 12-42
specifying 8-12 parameters
storing 8-11 AC sweep 11-4
driver example 13-10 ACM 10-27
files 3-67 admittance (Y) 7-32
names 3-65, 3-69 AF 11-16
redirecting 3-66 algebraic 6-8, 6-10
reducing size of 8-12, 8-14 analysis 6-7
version number, specifying 3-68 assignment 6-4
graphing 7-11 CAPOP 10-27
impedance 7-36 cell geometry 6-14
.MEASURE results 7-39 constants 6-4
network 7-36 data type 6-3
nodal voltage, AC 7-32 data-driven analysis 3-24
noise 7-37, 11-15 DC sweep 9-14
parameters 7-23 defaults 6-18
plotting 7-9 defining 6-2, 6-15
power 7-27 DIM2 7-37
printing 7-6—7-23 DIM3 7-37
printout format 7-17 evaluation order 6-3
reusing 7-62 HD2 7-37
saving 7-10 HD3 7-37
statements 7-2 hierarchical 3-58, 6-13, 7-42—7-43
variables 7-3 hybrid (H) 7-32
AC formats 7-34 IC 9-9
function 6-12 impedance (Z) 7-32
printing 8-34, 10-16 inheritance 6-17, 6-18
probing 7-10 INOISE 7-37
specifying significant digits for 8-8 input netlist file 3-6
voltage 7-24 KF 11-16
outz (digital vector file) 5-92 libraries 6-15—6-18
ovari 7-63, 7-65 M 3-58
overview of data flow 1-8 matrix 11-17
overview of simulation process 1-9 measurement 6-7

Index-

parameters (continued)
model 5-64, 5-66
modifying 3-24
multiply 6-8
names 3-34
ONOISE 7-37
optimization 6-14
OPTxxx 12-38, 12-40
output 7-23
overriding 6-15, 6-19
PAR keyword 6-5
PARHIER option 6-18
passing 6-13—6-21
order 6-3
problems 6-21
Release 95.1 and earlier 6-21
repeated 7-42
scattering (S) 7-32
scope 6-13—6-15, 6-21
SIM2 7-37
simple 6-4
simulator access 3-38
skew, assigning 3-38
subcircuit 3-58, 6-6
UIC 9-9
user-defined 6-5
UTRA 9-35
See also model parameters, optimization
parameters
parametric analysis 7-3
PARHIER option 6-18
PARMIN optimization parameter 12-45
path names 3-19, 8-9
path numbers, printing 8-9
PATHNUM option 8-9
p-channel
JFETs models 3-34
MOSFET's models 3-34
peak measurement 7-47

peak-to-peak value, measuring 7-51

period (digital vector file) 5-77
PERIOD statement 5-77, 5-78
phase
AC voltage 7-34
calculating 7-33
PHOTO model parameter 12-22
piecewise linear sources See PWL
pivot
algorithm, selecting 8-20, 9-25
change message 8-20, 9-25
matrix calculations 8-19, 9-24
reference 8-20, 9-25
selection 10-23
PIVOT option 8-20, 9-25, 10-23
PIVREF option 8-20, 9-25
PIVREL option 8-20, 9-25
PIVTOL option 8-20, 8-21, 9-25, 9-26
platforms for Hspice 1-6
PLIM option 8-9
plot
limits 7-8
models 3-34
value calculation method 8-6, 8-26, 11-8
PLOT keyword 7-12
.PLOT statement 7-2
in .ALTER block 3-44
simulation results 7-8, 7-21
pn junction conductance 9-45
pnp BJT models 3-34
POI keyword 9-15, 10-6, 11-6
pole/zero
analysis
absolute tolerance 8-25
frequency 8-25
maximum iterations 8-25, 8-29
real to imaginary ratio 8-25
starting points, Muller algorithm 8-25
control options 8-21-7?, 8-25, 77-8-25
POLY parameter 5-29, 5-54, 5-60

Index-

polynomial function 5-29
one-dimensional 5-29
three-dimensional 5-32
two-dimensional 5-30

POST option 1-8, 8-11

POST_VERSION option 8-9

pow(x,y) function 6-10

power
dissipation 7-28, 7-31
function 6-10
operating point table 9-6
output 7-27
stored 7-27

PP keyword 7-51, 7-52

PPWL
element parameter 5-54
function 5-52

precision numbers 6-8

print
control options 7-16

.PRINT statement 7-2
in .ALTER 3-44
simulation results 7-4, 7-21

printer, device specification 7-11

printout
columns, number 8-7
disabling 8-7, 8-8
page ejects 8-8
suppressing 3-43
value calculation method 8-6, 8-26, 11-8

PROBE option 8-12

.PROBE statement 7-2, 7-10, 7-21

program structure 1-6

.PROTECT statement 3-43

protecting data 3-43

PRTDEFAULT printer 7-11

PSF option 8-12

PULSE source function 5-9, 5-12, 5-15, 5-17
delay time 5-9
initial value 5-9

Index-

PULSE source function (continued)
onset ramp duration 5-9
plateau value 5-9
recovery ramp duration 5-9
repetition period 5-9
width 5-9
PUTMEAS option 7-40, 8-35
PWL
current controlled gates 5-28
data driven 5-20
element parameter 5-47, 5-54, 5-60
functions 5-28, 5-34
gates 5-28
output values 5-18
parameters 5-17
repeat parameter 5-18
segment time values 5-18
simulation time 10-36
sources, data driven 5-20
voltage-controlled capacitors 5-28
voltage-controlled gates 5-27
See also data driven PWL source
pwr(x,y) function 6-10
.PZ statement 9-18
PZABS option 8-25

PZTOL option 8-25

Q

guality assurance 12-2

R

R Element (resistor) 4-4
radix (digital vector file) 5-74
random limit parameter distribution 12-14
RC
analysis 10-9, 11-9
circuit 11-9
optimizing 12-53
rcells, reusing 6-15

real part of AC voltage 7-33—7-34

real vs. imaginary component ratio 8-25
reference temperature 3-22, 12-6

RELH option 8-18, 8-27, 9-30, 10-20, 11-8

RELI option 8-18, 8-19, 8-27, 9-24, 9-27, 9-31,
10-20
RELIN optimization parameter 12-45
RELMOS option 8-18, 8-19, 9-24, 9-27, 9-29,
9-31, 10-26
RELOUT optimization parameter 12-45
RELQ option 8-27, 10-20, 10-33
RELTOL option 8-26, 8-27, 10-19, 10-20
RELV option 8-19, 8-27, 8-29, 9-27, 9-31,
10-19, 10-20
RELVAR option 8-31, 10-20, 10-26
RELVDC option 8-19, 9-31
repeat function 13-3
residual sum of squares 12-55
resistance 8-24, 9-26, 11-3
resistor

current flow 7-26

element 4-2

element template listings 7-67

length parameter 4-3

linear 4-4

model name 4-2

node to bulk capacitance 4-3

voltage controlled 5-51

width parameter 4-3
RESMIN option 8-24, 9-26
RESULTS keyword 9-15
reusing simulation output 7-62
RIN keyword 11-17
rise and fall times 7-43
RISE keyword 7-45
rise time

specify 5-90
RISETIME option 8-27
RITOL option 8-25
RLOAD model parameter 5-66

RMAX option 8-31, 10-23, 10-35

RMIN option 8-32, 10-23, 10-35

RMS (root mean squared) measurement 7-47
RMS keyword 7-52

rms value, measuring 7-51

ROUT keyword 11-17

row/matrix ratio 8-20, 9-25

RSH model parameter 12-9

runtime statistics 8-6

S

S parameter
model type 3-34

S19NAME model parameter 5-67
S19VHI model parameter 5-67
S19VLO model parameter 5-67
S1INAME model parameter 5-66
S1VHI model parameter 5-67
S1VLO model parameter 5-66
.SAMPLE statement 11-16
sampling noise 11-16
saturable core

elements 4-15, 7-76

models 4-13, 4-15

winding names 7-76
.SAVE statement 9-10
.SAVE statement parameter 9-12
scale factors 2-11
SCALE parameter 4-2, 5-41, 5-47, 5-54, 5-60,
13-6
scaling, effect on delays 13-21
SCALM option 8-16
scattering (S) parameters 7-32
schematic

netlists 3-7
Schmitt trigger example 9-17
scope of parameters 6-15
scratch files 3-71
SDA option 8-12

Index-

SEARCH option 3-39, 3-65, 8-10, 13-18
search path, setting 3-40
SEED option 8-12
.SENS statement 9-18, 9-19
sensitivity analysis 9-19
SFFM source function
carrier frequency 5-22
modulation index 5-22
output amplitude 5-22
output offset 5-22
signal frequency 5-22
sgn(x) function 6-11
shorted nodes 9-37
sign function 6-11
SIGNAME element parameter 5-66
signed power function 6-10
silicon-on-sapphire devices 3-21
SIM2 distortion measure 7-37, 11-12
simulation
ABSVAR option 10-34
accuracy 8-26, 8-33, 10-16, 10-19, 10-25,
12-37
improvement 8-30, 10-16
models 10-26
option 10-27, 10-34
reduced by BYPASS 8-28, 10-15
timestep 10-25
tolerances 9-26, 9-27, 10-24
electrical measurements 13-18
example A-1
graphical output A-11
multiple analyses, .ALTER statement 3-44
multiple runs 3-55
performance, multithreading 3-74
process, overview 1-9
reducing time 3-25, 8-28, 8-30, 8-31, 8-32,

10-15, 10-16, 10-19, 10-21, 10-22, 10-36

results
graphing 7-11
output variables 8-12
plotting 7-9

Index-

simulation, results (continued)
printing 7-6—7-23
specifying 7-39—7-43
storing 8-11
reusing output 7-62
speed 8-8, 10-24
structure 1-6
time
reducing 8-29, 8-31, 8-32, 10-19
RELVAR option 10-34
title 3-9
SIN source function 5-12
sin(x) function 6-10
single point experiment 1-7
single-frequency FM source function 5-22
sinh(x) function 6-10
sinusoidal source function 5-12
skew
file 12-12
parameters 3-38, 12-8
slope (digital vector file) 5-89
SLOPE statement 5-77
SLOPETOL option 8-32, 10-21
simulation time 10-36
timestep control 10-34
small-signal
DC sensitivity 9-19
distortion analysis 11-12
transfer function 9-20
SMOOTH element parameter 5-54
SONAME model parameter 5-66
source
AC sweep 11-4
data driven 5-20
DC sweep 9-14
keywords 5-2
statements 3-11
See also independent sources
SOVHI model parameter 5-66
SOVLO model parameter 5-66
SPARSE option 9-26

SPICE statements (continued)

compatibility 8-13 .FOUR 10-38
AC output 7-33—7-34, 8-6, 8-26, 11-8 .GLOBAL 3-22
numeric format 8-7 .GRAPH 7-2, 7-11, 7-21
plot 7-8, 8-9 1C 9-9
option 8-13 INCLUDE 3-33
sqrt(x) function 6-10 initial conditions 9-8
square root function 6-10 .LIB 3-35, 3-36
st# file 3-77, 3-79 call 3-35
Star-Hspice nesting 3-37
conventions 2-10 k/&é[;géolfn
S;f;?eifyword 10-6 'MALIAS 3-50
DOUT 5.83 .MEASURE 7-2, 7-3, 7-39, 8-7, 8-11
.MODEL 3-33, 7-12, 12-6, 12-43
.PARAM 7-62
PERIOD 5-77, 5-78 NET 11-17
: .NODESET 8-22, 9-10, 9-22
SLOPE 5-77 NOISE 11-14
TDELAY 5-77 OP 0.6
TFALL 5-77 .OPTION 8-2
TRISE 5-77
TSKIP 5-78 ACCT 718
TUNIT ALT999(9) 7-17
with TFALL statement 5-91 CO 7-16
with TRISE statement 5-90 g\lgsoTL? 1:;“
statements OPTION SEARCH 3-39
AC 11-4, 12-6, 12-41 :
ALTER 3.44 PARAM 3-41, 12-42
call subcircuit 3-16 .PLOT 7-2,7-8,7-21
‘DATA 3.24 PRINT 7-2, 7-4, 7-21
external file 3-29, 3-31 .PROBE 7-2,7-10, 7-21
line 3.26 PROTECT 3-43

.SAMPLE 11-16

inner sweep example 3-28 .SAVE 9-10, 9-11

outer sweep example 3-28

.DC 9-13, 12-6, 12-41 .SENS g-ﬁ

.DCVOLT 9-8, 9-9 source 3-

DEL LIB 3-52 .STIM 7-2, 7-62
'D|3To 11-12 .SUBCKT 3-14, 7-42
DOUT 7-2 TEMP 3-22, 12-6, 12-7
element 3-11 i:friEZg 0

.END 3-55 . -

.ENDL 3-35, 3-36 -LEIADI; é?r_g'clTZ;L
.ENDS 3-15 .WIDTH TEC -
.EOM 3-15 . -

Index-

statistical analysis 12-7—12-34
statistics
calculations 12-3
listing 7-18
report 8-6
.STIM statement 7-2, 7-62
stimuli 7-62
structure simulation 1-6
subcircuit
node names 2-10
subcircuits
adder 13-3
call statement 3-16
calling 3-15, 3-16
calling tree 3-20
changing in .ALTER blocks 3-45
creating reusable circuits 3-57
element names 3-16
global versus local nodes 3-22
hierarchical parameters 3-58
library structure 3-65
model names 3-16
multiply parameter 3-16
multiplying 3-59
names 3-14
node names 3-16, 3-19, 3-20
node numbers 3-14
output printing 7-21
parameter 3-14, 3-15, 3-16
path names 3-19

power dissipation computation 7-28
.PRINT and .PLOT statements 3-61

printing path numbers 8-9
search order 3-61
test example 3-14
zero prefix 3-20
SUBCKT statement 3-14, 7-42
.sw# file 3-76, 3-78
sweep
data 3-29, 8-11
frequency 11-7

Index-

sweep (continued)

inner 3-29

outer 3-29

variables 13-16
SWEEP keyword 9-15, 10-6, 11-6
switch example 5-55
switch-level MOSFET's example 5-55
symbols, reserved 2-11

T

tabular data 5-81, 5-86
Tabular Data section
time interval 5-78
Taguchi analysis 12-2
tan(x) function 6-10
tanh(x) function 6-10
TARG keyword 7-45
target specification 7-44
TC1, TC2 element parameters 5-42
TD parameter 5-42, 5-47, 5-54, 5-60, 7-35,
7-48
tdelay (digital vector file) 5-87
TDELAY statement 5-77, 5-87
TEMP
keyword 9-15, 11-6
model parameter 3-22, 12-6
sweep variable 13-16
.TEMP statement 3-22-3-24, 12-6, 12-7-??
temper variable 6-13
temperature
AC sweep 11-4
circuit 12-4, 12-6, 12-7
coefficients 4-2, 13-16
DC sweep 9-14, 9-16
derating 3-22, 3-24, 12-6
element 12-6, 12-7
optimizing coefficients 13-16
reference 3-22, 12-6
sweeping 13-16
variable 6-13

Temperature Variation Analysis 12-2
.TF statement 9-18
tfall (digital vector file) 5-91
TFALL statement 5-77, 5-91
three-dimensional function 5-32
threshold voltage 7-60
TIC model parameter 7-13
time 9-6
delay 7-35
domain
algorithm 10-29
variable 6-13
See also CPU time
TIMERES option 8-32, 10-21
TIMESCALE model parameter 5-67
timestep
algorithms 8-30, 10-16, 10-32
calculation for DVDT=3 8-30, 10-22
changing size 8-27, 10-20
control 8-28, 8-30, 8-31, 10-20, 10-21, 10-22
algorithms 10-31-10-34
CHGTOL 10-33
DELMAX 10-35
FS 10-35
FT 10-35
IMAX 10-32
IMIN 10-32
minimum internal timestep 10-35
Minimum Timestep Coefficient 10-35
options 10-25, 10-34
RELQ 10-33
RMAX 10-35
RMIN 10-35
TRTOL 10-33
TSTEP 10-35
default control algorithm 10-29
DVDT algorithm 10-33
internal 8-30, 10-22
local truncation error algorithm 10-33
maximum 8-31, 8-32, 10-22, 10-23
minimum 8-31, 8-32, 10-22, 10-23

timestep (continued)
reversal 8-30, 10-19, 10-33
setting initial 8-30, 10-22
transient analysis algorithm 8-32, 10-16
variation by HSPICE 8-30, 10-22
TIMESTEP model parameter 5-67
title for simulation 3-9
.TITLE statement 3-9
tmp directory 3-71
TMPDIR environment variable 3-71
TNOM option 3-22, 12-6
TO keyword 7-52, 7-57
TOL 11-16
tolerance options 9-22
TOP keyword 9-12
topology 8-8
TOX model parameter 12-9
r# file 3-76, 3-78
.TRAN statement 12-6, 12-41
transfer function 9-20
transfer sign function 6-11
transient
analysis 7-3
accuracy 8-26
Fourier analysis 10-38
initial conditions 9-8, 10-3
inverter 10-10
number of iterations 8-31, 10-22
RC network 10-9
sources 5-7
output variables 7-23
transmission lines
example 13-10
U Element 4-35
TRAP algorithm
See trapezoidal integration
trapezoidal integration
algorithm 8-33, 10-16, 10-28
coefficient 8-33, 10-20
TREF model parameter 12-6, 12-7

Index-

TRIG keyword 7-44
trigger specification 7-44
triode tube 5-57
trise (digital vector file) 5-90
TRISE statement 5-77, 5-90
tristate impedance 5-93
triz (digital vector file) 5-93
TRTOL option 8-28, 10-21, 10-33
truncation algorithm 10-32
tskip (digital vector file) 5-77
TSKIP statement 5-78
TSTEP
multiplier 8-31, 8-32, 10-23
option 8-31, 8-32, 10-23
timestep control 10-35
tunit (digital vector file) 5-77
TUNIT statement 5-77
with TFALL statement 5-91
with TRISE statement 5-90
two-dimensional function 5-30

U

U Elements 5-62
digital input 5-62
transmission line model 3-34
uiC
analysis parameter 9-5
keyword 10-6
parameter 9-9

transient analysis parameter 10-3

UNIF keyword 12-16

uniform parameter distribution 12-14

unity gain frequency 13-18
unprintable characters in input 3-3
.UNPROTECT statement 3-44
UNWRAP option 8-35, 11-8

UTRA model parameter restriction 9-35

Index-

V

variables
AC formats 7-34
changing in .ALTER blocks 3-45
DEFAULT _INCLUDE 3-67
Hspice-specific 6-13
output 7-3
AC 7-31
DC 7-23
transient 7-23
plotting 13-7
sweeping 13-16
TMPDIR 3-71
variables, environment 2-2
variance, statistical 12-3
VCCAP 5-52
VCCS See voltage controlled current source
VCR See voltage controlled resistor
VCVS See voltage controlled voltage source
vector patterns 5-73
vendor libraries 3-64
VERIFY option 8-7, 8-10
Verilog value format 5-84
version
95.3 compatibility 10-35
H9007 compatibility 8-14
HSPICE 3-34
VFLOOR option 8-21, 10-23
Viewlogic 5-62
graph data file 8-10, 8-11
Viewsim simulator 5-62
vih (digital vector file) 5-94
VIH statement 5-94
vil (digital vector file) 5-95
VIL statement 5-95
vname (digital vector file) 5-75
Vnn node name in CSOS 3-21
VNTOL option 8-28, 8-29, 10-19, 10-21
voh (digital vector file) 5-98

VOH statement 5-98
vol (digital vector file) 5-99
VOL keyword 5-44
VOL statement 5-99
voltage
error tolerance
DC analysis 8-19, 9-31
transient analysis 8-27, 10-20
failure 9-39
initial conditions 9-8
iteration-to-iteration change 8-23, 9-23
limiting, in transient analysis 8-32, 10-22
logic high 5-94, 5-98
logic low 5-95
maximum change 8-30, 10-19
minimum
DC analysis 8-18, 9-29
listing 8-21, 10-23
transient analysis 8-26, 8-28, 10-21
nodal output DC 7-24
operating point table 9-6
relative change, setting 8-31, 10-20
sources 5-38, 5-58, 7-24
summer 5-43
tolerance
BYTOL option 8-29, 10-19
MBYPASS multiplier 8-29, 10-20
value for BYPASS 8-29, 10-19
VOLTAGE keyword 9-6
voltage-controlled
capacitor 5-52, 5-56
current source 5-28, 5-45, 5-49, 5-50, 5-55,
7-68
oscillator 5-44
resistor 5-28, 5-51, 5-55
voltage source 5-27, 5-38, 7-68
vref (digital vector file) 5-95
VREF statement 5-95
vth 7-65
vth (digital vector file) 5-97
VTH statement 5-97

vtl 7-65
VXxxx source element statement 5-2

W

W Elements 4-28
transmission line model 3-34
warnings
all nodes connected together 9-37
floating power supply nodes 3-19
limiting repetitions 8-14
misuse of VERSION parameter 3-35
suppressing 8-14
zero diagonal value detected 9-39
WARNLIMIT option 8-14
waveform
characteristics 5-86, 5-87

Waveform Characteristics section 5-86
WEIGHT keyword 7-52, 7-57

WHEN keyword 7-48, 13-18

width of printout 7-16

WIDTH statement 7-16

wildcard uses 2-2

WL option 8-16

WMAX model parameter 1-5

WMIN model parameter 1-5

worst case analysis 12-7, 12-26, 12-34
Worst Case Corners Analysis 12-2
WSF output data 8-10

X

XGRID model parameter 7-13
XL model parameter 12-9

XMAX model parameter 7-13
XMIN model parameter 7-13
XnR, Xnl option 8-25

XPHOTO model parameter 12-22
XSCAL model parameter 7-13
XW model parameter 12-9

Index-

Y

YGRID model parameter 7-13
yield analysis 12-2

YIN keyword 7-36, 11-18
YMAX parameter 7-13, 7-57
YMIN parameter 7-13, 7-56
YOUT keyword 7-36, 11-18
YSCAL model parameter 7-14

Index-

Z

zero delay gate 5-44, 5-56
ZIN keyword 7-36, 11-18
ZOUT keyword 7-36, 11-18
ZUKEN option 8-12

	HSPICE Simulation and Analysis User Guide
	Table of Contents
	Preface
	What’s New in This Release
	Known Limitations and Resolved D/Es
	Improved Documentation

	About This Manual
	Audience
	Conventions
	Commands
	Menu Text, File Names, and Examples

	Customer Support
	Accessing SolvNet
	Contacting the Synopsys Technical Support Center

	Overview
	Applications
	Features
	Supported Platforms
	Simulation Structure
	Data Flow
	Simulation Process Overview

	Setup for Simulation
	Setting Environment Variables
	Using Wildcards
	Examples

	Netlist Overview
	Basic Structure
	First Character
	Adding Elements
	Comments and Line Continuation
	Software Conventions

	Simulation Input and Controls
	Using Netlist Input Files
	Input Netlist File Guidelines

	Input Netlist File Composition
	Title of Simulation and�.TITLE Statement
	Comments
	Element and Source Statements
	.SUBCKT or�.MACRO Statement
	.ENDS or�.EOM Statement
	Subcircuit Call Statement
	Element and Node Naming Conventions
	.GLOBAL Statement
	.TEMP Statement
	.DATA Statement
	.INCLUDE Statement
	.MODEL Statement
	.LIB Call and Definition Statements
	.OPTION SEARCH Statement
	.PARAM Statement
	.PROTECT Statement
	.UNPROTECT Statement
	.ALTER Statement
	.ALIAS Statement
	.MALIAS Statement
	.CONNECT Statement
	.DEL LIB Statement
	.END Statement
	Condition-Controlled Netlists (IF-ELSE)

	Using Subcircuits
	Hierarchical Parameters
	Undefined Subcircuit Search

	Discrete Device Libraries
	DDL Library Access
	Vendor Libraries
	Subcircuit Library Structure

	Using Standard Input Files
	Design and File Naming Conventions
	Configuration File (meta.cfg)
	Initialization File (hspice.ini)
	DC Operating Point Initial Conditions File (<design>.ic#)

	Starting HSPICE
	Executing a Simulation
	Interactive Simulation
	Sample HSPICE Commands

	Improving Simulation Performance with Multithreading
	Running HSPICE-MT
	Performance Improvement Estimations

	HSPICE Output Files

	Elements
	Passive Elements
	Resistors
	Linear Resistors
	Behavioral Resistors
	Capacitors
	Linear Capacitors
	Behavioral Capacitors
	Charge-Conserving Capacitors
	Inductors
	Mutual Inductors
	Linear Inductors

	Active Elements
	Diode Element
	Bipolar Junction Transistor (BJT) Element
	JFETs and MESFETs
	MOSFETs

	Transmission Lines
	Input Syntax for the W Element
	W Element Statement
	T Element Statement
	U Element Statement
	Frequency-Dependent Multi-Terminal (S) Element
	Frequency Table Model
	Group Delay Handler in Time Domain Analysis
	Pre-Conditioning S Parameters

	Buffers

	Sources and Stimuli
	Independent Source Elements
	Source Element Conventions
	Independent Source Element
	DC Sources
	AC Sources
	Transient Sources
	Mixed Sources

	Independent Source Functions
	Pulse Source Function
	Sinusoidal Source Function
	Exponential Source Function
	Piecewise Linear (PWL) Source Function
	Data-Driven Piecewise Linear Source
	Single-Frequency FM Source Function
	Amplitude Modulation Source Function

	Voltage and Current Controlled Elements
	Polynomial Functions
	Piecewise Linear Function

	Power Sources
	Independent Sources
	Controlled Sources

	Voltage-Dependent Voltage Sources — E Elements
	Voltage-Controlled Voltage Source (VCVS)
	Behavioral Voltage Source
	Ideal Op-Amp
	Ideal Transformer
	E Element Examples

	Current-Dependent Current Sources — F Elements
	Current-Controlled Current Source (CCCS) Syntax
	F Element Parameters

	Voltage-Dependent Current Sources — G Elements
	Voltage-Controlled Current Source (VCCS)
	Behavioral Current Source Syntax
	Voltage-Controlled Resistor (VCR)
	Voltage-Controlled Capacitor (VCCAP)
	G Element Parameters
	G Element Examples

	Current-Dependent Voltage Sources — H Elements
	Current-Controlled Voltage Source (CCVS)
	H Element Parameters
	H Element Examples

	Digital and Mixed Mode Stimuli
	U�Element Digital Input Elements and Models
	U Element Digital Outputs

	Replacing Sources With Digital Inputs
	Specifying a Digital Vector File
	Vector Patterns
	Defining Tabular Data
	Tabular Data
	Waveform Characteristics
	Modifying Waveform Characteristics
	Comment Lines
	Continuing a Line
	Digital Vector File Example

	Parameters and Functions
	Using Parameters in Simulation (.PARAM)
	Defining Parameters
	Assigning Parameters
	User-Defined Function Parameters
	Subcircuit Default Parameter Definitions
	Predefined Analysis Function
	Measurement Parameters
	.PRINT|.PROBE|.PLOT|.GRAPH Parameters
	Multiply Parameter

	Using Algebraic Expressions
	Built-In Functions
	Parameter Scoping and Passing
	Library Integrity
	Reusing Cells
	Creating Parameters in a Library
	Parameter Defaults and Inheritance
	Parameter Passing Solutions

	Simulation Output
	Overview of Output Statements
	Output Commands
	Output Variables

	Displaying Simulation Results
	.PRINT Statement
	.PLOT Statement
	.PROBE Statement
	.GRAPH Statement
	Using Wildcards in PRINT, PROBE, PLOT, and GRAPH Statements
	Print Control Options
	Printing the Subcircuit Output

	Selecting Simulation Output Parameters
	DC and Transient Output Variables
	AC Analysis Output Variables
	Element Template Output

	Specifying User-Defined Analysis (.MEASURE)
	.MEASURE Performance
	.MEASURE Parameter Types
	.MEASURE Statement: Rise, Fall, and Delay
	Average, RMS, and Peak Measurements
	FIND and WHEN Functions
	Equation Evaluation
	Average, RMS, MIN, MAX, INTEG, and PP
	INTEGRAL Function
	DERIVATIVE Function
	ERROR Function
	Arithmetic Expression Measurements

	.DOUT Statement: Expected Digital Output Signal
	Reusing Simulation Output as Input Stimuli
	Output Files

	Element Template Listings

	Simulation Options
	Setting Control Options
	.OPTION Statement

	General Control Options
	Error Options
	Version Options

	Model Analysis Options\
	DC Operating Point, DC Sweep, and Pole/Zero Options
	Transient and AC Small Signal Analysis Options
	Input and Output Options

	Initializing DC/Operating Point Analysis
	Simulation Flow
	Initialization and Analysis
	DC Initialization and Operating Point Statements
	.OP Statement — Operating Point
	Element Statement IC Parameter
	.IC and�.DCVOLT Initial Condition Statements
	.NODESET Statement
	SAVE and LOAD Statements

	.DC Statement—DC Sweeps
	Keywords and Parameters
	Schmitt Trigger Example

	Other DC Analysis Statements
	.SENS Statement — DC Sensitivity Analysis
	.TF Statement — DC Small-Signal Transfer Function Analysis
	.PZ Statement— Pole/Zero Analysis

	DC Initialization Control Options
	Accuracy and Convergence
	Accuracy Tolerances
	Accuracy Control Options
	Autoconverge Process

	Reducing DC Errors
	Shorted Element Nodes
	Inserting Conductance, Using DCSTEP
	Floating-Point Overflow

	Diagnosing Convergence Problems
	Non-Convergence Diagnostic Table
	Traceback of Non-Convergence Source
	Solutions for Non-Convergent Circuits

	Transient Analysis
	Simulation Flow
	Overview of Transient Analysis
	Using the�.TRAN Statement
	.TRAN Keywords and Parameters
	.TRAN Examples
	.TRAN Output Syntax

	Transient Analysis of an RC Network
	Transient Analysis of an Inverter
	Using the�.BIASCHK Statement
	Options for the�.biaschk Command

	Transient Control Options
	Matrix Manipulation Options

	Simulation Speed and Accuracy
	Simulation Speed
	Simulation Accuracy

	Numerical Integration Algorithm Controls
	Gear and Trapezoidal Algorithms

	Selecting Timestep Control Algorithms
	Iteration Count Dynamic Timestep Algorithm
	Local Truncation Error (LTE) Dynamic Timestep
	DVDT Dynamic Timestep Algorithm
	Timestep Controls

	Fourier Analysis
	.FOUR Statement
	.FFT Statement

	AC Sweep and Small Signal Analysis
	AC Small Signal Analysis
	.AC Statement
	AC Control Options
	AC Analysis of an RC Network
	Other AC Analysis Statements
	.DISTO — AC Small-Signal Distortion Analysis
	.NOISE Statement — AC Noise Analysis
	.SAMPLE Statement — Noise Folding Analysis
	.NET Statement - AC Network Analysis
	References

	Statistical Analysis and Optimization
	Analytical Model Types
	Simulating Circuit and Model Temperatures
	Temperature Analysis
	.TEMP Statement

	Worst Case Analysis
	Model Skew Parameters

	Monte Carlo Analysis
	Functions
	Monte Carlo Setup
	Monte Carlo Output
	.PARAM Distribution Function
	Monte Carlo Parameter Distribution
	Monte Carlo Examples

	Worst Case and Monte Carlo Sweep Example
	HSPICE Input File
	Transient Sigma Sweep Results
	Monte Carlo Results

	Optimization
	Optimization Control
	Simulation Accuracy
	Curve Fit Optimization
	Goal Optimization
	Timing Analysis
	Optimization Syntax

	Optimization Examples
	MOS Level 3 Model DC Optimization
	MOS Level 13 Model DC Optimization
	RC Network Optimization
	Optimizing CMOS Tristate Buffer
	BJT S Parameters Optimization
	BJT Model DC Optimization
	Optimizing GaAsFET Model DC
	Optimizing MOS Op-amp

	Running Demonstration Files
	Using the Demo Directory Tree
	Two-Bit Adder Demo
	One-Bit Subcircuit
	MOS Two-Bit Adder Input File

	MOS I-V and C-V Plotting Demo
	Plotting Variables
	MOS I-V and C-V Plot Example Input File

	CMOS Output Driver Demo
	Strategy
	CMOS Output Driver Example Input File

	Temperature Coefficients Demo
	Input File, for Optimized Temperature Coefficients
	Optimization Section

	Simulating Electrical Measurements
	T2N2222 Optimization Example Input File
	Transient Measurements

	Modeling Wide-Channel MOS Transistors
	Demonstration Input Files

	Full Simulation Examples
	Simulation Example Using AvanWaves
	Input Netlist and Circuit
	Execution and Output Files
	Simulation Graphical Output in AvanWaves

	Simulation Example Using Cosmos-Scope
	Input Netlist and Circuit
	Execution and Output Files
	View HSPICE Results in Cosmos-Scope

	Index

